

Are pharmaceutical residues a problem for urine reuse in agriculture?

Dr.-Ing. Martina Winker, M.Sc. Sustainable Sanitation – ecosan program German Technical Cooperation (GTZ) GmbH

What is a fertilizer?

- Fertilizers are substances which are determined to be applied directly or indirectly towards agricultural crops to support their growth, to enhance their yields or to improve their quality;
- Excluded are substances which are determined to protect plants from pests and diseases without supporting plant nutrition, determining plant nutrition, influencing life cycles in plants as well as soil conditioners, culture media, plant additives, carbon dioxide, peat and water.

(Düngemittelgesetz, 1977; BGBI. I S. 2134)

Classification of Fertilizers

- Liquid ↔ Solid ullet
- Mineral \leftrightarrow Organic \bullet

	Fertilizer type		
	mineral	organic	
Nutrient concentration	high	low	_
	> 8%	< 1-5%	
Nutrient availability	high	partially available	
(Timing & Efficiency)		N - hardly available	
		P - medium term like MF	
		K like MF	
Soil structure	-	Improvement	
CEC	-	Improvement	
Hygiene	-	Treatment required	
Price	high	Treatment required	
	C		(Clemens,

Change of perspective

Matching of capabilities of existing fertiliser application technologies:

- 10 50 m³ ha⁻¹ liquid fertilisers
- \leq 40 t DM ha⁻¹ solid fertilisers
- 100 600 kg ha⁻¹ granulates

Properties of products

Fertilising	Product	Level of	TS	COD	N	Р	ĸ	Reference
type (FT)		knowledge	[%]	[g -1]	[g -1]	[g -1]	[g -1]	
Liquid mineral	Urine	+	1.5- 3	4-11	1.8-17.5	0.2-3.7	0.7-3.3	Meinzinger and Oldenburg, 2008
	Concentrated urine e.g. Urevit	(+)		10	11	0.65	5.7	Boller, 2007
	Ammonia solution	(+)			120	n.r.	n.r.	Tettenborn et al., 2007
Liquid organic mineral	Digestate	-	≤1	2.8	1.5	-	0.14	Wendland, 2008
	Untreated sludge blackwater	-						
Solid mineral	Struvite	(+)			60	130	n.r.	Calculated stochiometrically
Solid organic	Compost	-		100	5-20	2-4	3-10	Simons et al. (2005)
Solid organic mineral	Sludge with DM >20 %	-						

Urine

- High concentrations of N and P as well as other nutrients
- Low ammonia emission
- Comparable to liquid manure after field application
- Multi-component fertiliser

Nutrient compositions and crop requirements

Urine's fertiliser products

- Mostly derived in high-tech solutions
- Achieved through a combination of various treatment steps
- Limiting factor in production: energy costs
- Different plant availability of different MAP products according to specific crop (Simons, 2008)

History – E. Wolff

Es handelt sich in den Städten zunächst um Beseitigung der Fä= kalien, also des Grubeninhalts oder Latrinendüngers. Aus zahl= reichen Untersuchungen ergiebt sich, daß ein wennch (Erwachsene und Kinder zusammengerechnet) durchschnittlich im Jahr an Extrementen liefert:

	Frische	Trocken=	Mineral=	Stid-	Phosphor-	Rali.	Chlor=	
Fäces . kg Harn "	48,5 422,0	11,0 19,8	1,65 4,85	0,75 4,0	0,5 0,85	0,25 0,75	0,15 3,0	
In Sa. kg 4 In Proz. der	170,5	30,8	6,5	4,75	1,35	1,0	3,15	
frifch. Subst. %. In Proz. ber	0 100	6,54	1,38	1,01	0,29	0,21	0,67	
trodn. Subst. "	, —	100	21,1	15,4	4,4	3,3	10,2	

(Emil Wolff, 1868)

Fertilizing Effect of Urine

Fertiliser demands worldwide

(FAZ.NET, 2008)

Fertiliser demands worldwide

Düngemittelverbrauch = Fertilizer usage

in den vergangenen Jahren, in Millionen Tonnen 😑 Mio. t

(FAZ.NET, 2008)

Urine as fertiliser

- Consume of pharmaceuticals is common in everyday life.
- Urine is a component in new sanitation systems.

- Urine has a good potential as liquid fertilizer.
- But: Urine might contain pharmaceutical substances...

Pharmaceuticals

Database

Database

Two aspects investigated regarding plants: Uptake and Phytotoxicity

	Uptake	Phytotoxcity
Datasets	162	348
Substances	14	30
Plant species	25	30
Plant families	16	11

Evaluation of Database - Substances

Phytotoxicity

Uptake

Mainly antibiotics investigated!

Evaluation of Database – Plant types

Phytotoxicity

Uptake

Mainly cereals and umbellifers reg. uptake. Mainly cereals and legumes reg. phytotoxicity.

- Comparison of collected data with urine
- Tests with liquid medium
 - Urine-water mix assumed
 - 112 DS 12 pharmaceuticals
 - Only two articles comparable reporting on uptake by very old bioassays.
- Tests with solid medium
 - Application of urine: 25 m³ ha⁻¹
 - Infiltration of 0.5 m assumed
 - 45 DS 9 pharmaceuticals

Hammer & Clemens. 2007. A tool to evaluate the fertilizer value and the environmental impact of substrates from wastewater treatment. *Water Science & Technology 56 (5), pp 201 – 209*

Substance Plant species		Reported impacts	Factor (DB/U)
Chloroquine	soybean	Phytotoxic: neg. on w, h, r, s, l	182
Chlorotetracycline	spring wheat	Phytotox c: pos. on h, r	82
Chlorotetracycline	pinto bean	Phytotoxic: neg. on w, h, r, s, l	82
Chlorotetracycline	green onion	Bioaccumulation: 0.013 ng kg ⁻¹ FW in stalk & leaves	51
Chlorotetracycline cabbage		Bioaccumulation: 0.01 ng kg ⁻¹ FW in stalk & leaves	51
Metronidazole	soybean	Phytotoxic: neg. on w, h, r, s, l	67
Oxytetracycline	spring wheat	Phytotoxic: pos. on h, r	2
Oxytetracycline	pinto bean	Phytotoxic: neg. on w, h, r, s, l	2

Pharmaceuticals found in guttation drops.

(Stokes, 1954; Brian et al., 1951;)

- Uptake via peel observed for carrots and potatoes. (Dolliver et al., 2007; Boxall et al., 2006)
- Different behavior regarding pharmaceutical substances by different plan¹.

(Batchelder, 1982)

Uptake of oxytetracycline tected in barley grain. (Jacobsen et al., 2004)

Applied amount are much higher then in case of fertilization with urine.

Design of Pot Experiments with Rye Grass

surse of the

- Only Carbamazepine (CZ) found in soil.
- No effect on biomass production visible.
- Aside of well-known fertilizing effect of urine.
- No differences of vegetation perior
- Analytics: (Reich & Er
 - EE2 not measurable (matrix effects)
 - IBU only in roots (LOQ: 20 μg kg⁻¹ TM)
 - CZ LOQ in roots: 30 µg kg⁻¹ TM
 - LOQ in aerial plant parts: 75 μ g kg⁻¹ TM

Plant Tests with Rye Grass

Pot experiments

- Biodegradation seems to be an important factor.
- Biomass production was not influenced in the pharmaceutical concentrations applied via urine.
- CZ was found in roots and aerial plant parts of rye grass.
- Assumption: Pharmaceutical substances persistent in soil can be taken up by plants in higher concentrations.

Only first results!!!

Winker et al. 2008. Comparison of

pharmaceutical concentrations in

human urine in Germany. Water Research 42 (14), pp. 3633 -3640.

analytical and theoretical

Germination Tests

- 5 pharmaceuticals used
- At different concentration levels to identify phytotoxicologic effects.
- Duration of test: 10 days
- Applied in a water-urine-mix
- Evaluated: successful germination and dry weight

Results and discussion

Roots of winter barley in contact with ibuprofen.

Germination Tests

- The different types of cereals as well as cress react differently.
- Application of urine had a much larger effect on germination.
- It seemed that certain pharmaceutical substances might even have a positive effect.

An effect on germination due to "naturally" expected pharmaceutical concentrations in urine is not expected.

Conclusion I

- An evaluation of potential toxic effects for human beings is not possible at the moment.
- If urine is reused in agriculture, some of the pharmaceutical residues will enter the human food chain.
- Moreover, research carried out so far shows that the expected concentrations of pharmaceutical residues in average urine do not reach concentration levels which affect plant growth and development.
- Load of hormones and antibiotics in human urine are much lower than in animal manure which is already used in agriculture.

Conclusion II

Statement of Jörn Germer (cited in von Münch and Winker (2009))

"Drug residues in sustainable sanitation products used to supply plant nutrients can hardly be a serious issue in regions where malnutrition, groundwater and surface water pollution due to inappropriate sanitation and irrigation with untreated wastewater is a reality".

Micro nutrients vs. Heavy Metals