Challenges for the future: emerging micropollutants in urban water cycle

Thomas Ternes, Jessica Benner, Manoj Schulz, Adriano Joss, Hansruedi Siegrist

Chemicals used in the EU

- 100000 "old chemicals" until 1981
- > 4000 "new chemicals" since 1981
- 30000 chemicals > 1 t yr⁻¹
- 2900 chemicals > 100 t yr⁻¹
- 2600 chemicals > 1000 t yr⁻¹

Predicted application and production quantities

Application quantities in Germany

Human-use pharmaceuticals (ca. 2800): about 6500 t yr⁻¹ corresponds to 78 g cap⁻¹ yr⁻¹

Veterinary pharmaceuticals: about 1000 t yr⁻¹

Pesticides (ca. 200): about 30000 t yr⁻¹

> Surfactants: 188629 t yr⁻¹ (2.3 kg cap⁻¹ yr⁻¹)

Production quantities in Germany

Personal care products: > 500000 t yr⁻¹ (> 6.1 kg cap⁻¹ yr⁻¹)

> EDTA: 29560 t yr⁻¹

Organic pollutants already regulated (WFD, ...) based on ecotoxicological criteria

Source: Ternes and Joss (2006) IWA Publishing

Emerging contaminants detected in the environment

Environmental quality standards (EQS) of dissolved contaminants determined according to WFD

(based on ecotoxicological data)

¹AA-EQS-S

Annual average
measured concentration
in German rivers

Bisphenol A	0.79 ng/L	0.5 ng/L-270 ng/L
Diclofenac	100 ng/L	50-500 ng/L
EE2	0.03 ng/L	< 1 ng/L (WWTPs)

Discharged primarily via WWTPs

Source: Moltmann et al., 2007, German EPA report

btg Bundesanstalt für Gewässerkunde

¹: Suggested maximum annual average concentration

UNESCO-IHE Seminar, Delft, 6.4..2009

Ecotoxicological effects of betablockers

- ➤ 4-week exposure of 500 ng/L propranolol ⇒ effects on reproduction and steroid levels in fish (Japanese medaka)^a
- > More than additive effects of betablocker mixtures^b

Theoretical ΣEC_{50} (*daphnia magna*) of propranolol, metoprolol and atenolol: 21.3 % inhibition, measured inhibition: 65 %

^a Huggett, D. B. et al. Arch. Environ. Contam. Tox. 2002, 43, 229-235.
^b Cleuvers, M. Chemosphere 2005, 59, 199-205.

Pharmaceuticals in treated wastewater

lodinated contrast media: found in surface water and groundwater

UNESCO-IHE Seminar, Delft, 6.4..2009

from Walter Giger

UNESCO-IHE Seminar, Delft, 6.4..2009

Measures to remove emerging contaminants and their transformation products in the water cycle

Evironmental quality standards (EQS) of WFD

If EQS are exceeded (probably for diclofenac, isoproturon, EE2, bisphenol A, ...) advanced measures have to be established, in order to guaranty the good ecological/chemical status of rivers and streams until 2015.

Processes for advanced municipal wastewater treatment to remove emerging pollutants

Frequently transformation, sometimes mineralization

- > **Biological degradation:** nitrification, denitrification
- > Chemical oxidation: ozone, advanced oxidation
- Photo(chemical)degradation: UV/H₂O₂, sun light
- **Quantitative removal**
- Sorption: activated carbon (GAC, PAC)
- Size exclusion: dense membranes (nanofiltration, reverse osmosis)

Biological degradation (and sorption on sludge particle)

UNESCO-IHE Seminar, Delft, 6.4..2009

Comparison: biofilter, conventional activated sludge (CAS) and membrane bioreactor (MBR)

UNESCO-IHE Seminar, Delft, 6.4..2009

Comparison of primary degradation MBR, biofilter, conventional plant

Source: Joss und Siegrist, 2005, Eawag News

UNESCO-IHE Seminar, Delft, 6.4..2009

Iodinated X ray contrast medium lopromide

Annual consumption (Germany): ca. 130 t/a (1,5 g cap⁻¹a⁻¹) > 95% excreted nonchanged

log K_{ow}: -2.33-(-2.05) (Steger-Hartmann et al., 1999)

K_d (activated sludge/digested sludge): 5.2-30 L/kg (Carballa et al., 2008; Ternes et al., 2005)

pK_a: 9.9 (Bayer-Schering)

Wastewater treatment plant Braunschweig Irrigation of treated wastewater digested sludge on 3000 h agricultural land since more than 50 years

lopromide

influent: 18 μg/L, WWTP effluent: 3μg/L Wells in irrigation area: <LOQ

Leaching of lopromide in soil columns

Diploma thesis: J. Oppel

source: Oppel, J., Broll, G., Löffler, D., Meller, M., Römbke, J., Ternes, T.A.. Sci. Total Environ., 2004, 42, 7207-7217

UNESCO-IHE Seminar, Delft, 6.4..2009

Leaching of lopromide with "disturbed" soil columns

Leaching behavior: ¹⁴C-lopromide

LUFA 2.2

Neuenkirchen

Recovery 60% 70% 0% 10% 20% 30% 40% 50% 80% 90% 100% 0-5 5-10 Soil depth [cm] 10-15 15-20 pH 7,0 20-25 low. org. C 25-30 Leachate

EuroSoil 5

High leaching potential

 $\log K_{\rm OW} = -2.33$

Source: Oppel et al., 2004

UNESCO-IHE Seminar, Delft, 6.4..2009

Formation of lopromide transformation products (TPs) in the soil columns

Source: Oppel et al., 2004

bfg Bundesanstalt für Gewässerkunde

UNESCO-IHE Seminar, Delft, 6.4..2009

HN

0=

ΟH

Identification of lopromide transformation products

Diploma thesis: Manoj Schulz

source: Schulz M., Löffler D., Wagner M., Ternes T.A., ES&T, 2008, 42, 7207-7217

UNESCO-IHE Seminar, Delft, 6.4..2009

Degradation of iopromide in soil/water-systems

UNESCO-IHE Seminar, Delft, 6.4..2009

Batch-experiments

Formation of 12 iopromide TPs in water/soil-systems

detection via HPLC/UV

Iopromide transformation Phase I

concentration in [µmol/L]

lopromide transformation

Phase II

concentration in [µmol/L]

lopromide transformation

Phase III

concentration in [µmol/L]

Fragmentation: using a linear trap of 4000 Q TRAP™

UNESCO-IHE Seminar, Delft, 6.4..2009

¹³C-NMR (176 MHz) of TP 10 (TP 701)

UNESCO-IHE Seminar, Delft, 6.4..2009

Transformation products (TPs) of lopromide in WWTP Frankfurt

Sludge age: 20-22 d, hydraul. retention time (biol): 4-5 h, 1.3 Mill inh. equivalent

Source: Schulz et al., ES&T, 2008

Potential aerobic degradation pathways of Iopromide

Occurrence of iopromide TPs

Sorption onto activated carbon

source: unpublished data of Neptune project

UNESCO-IHE Seminar, Delft, 6.4..2009

PAC addition with/without sludge recycling

With sludge recycling: SA_{PAC} >> HRT

Without sludge recycling: SA_{PAC} = HRT

Sorption on powdered activated carbon (PAC=20 mg/L) in WWTP effluent (12 mg/L TOC) and ground water (0,3 mg/L TOC)

UNESCO-IHE Seminar, Delft, 6.4..2009

Sorption of antibiotics with PAC in WWTP effluent (12mg/L TOC)

UNESCO-IHE Seminar, Delft, 6.4..2009

Thomas A. Ternes, BFG Koblenz

bfg Bundesanstalt für Gewässerkunde

Oxidative transformation

Dissertation: Jessica Benner

source: Benner J., von Gunten, U., Ternes T.A., ES&T, under revision

UNESCO-IHE Seminar, Delft, 6.4..2009

Ozonation of effluents: Braunschweig and Kloten-Opfikon

Convent. activated sludge (CAS)

2 columns (2 x 140 litre) for ozonation contact time: ~ 8-9 min Pharma. dosage: ~ 2 mg/L/without Ozone doses: **0.5, 1, 2, 3.5, 5, 10, 15 mg/L** DOC: 6 - 8 mg/L (Kloten-Opfikon) DOC: 23 mg/L (Braunschweig)

UNESCO-IHE Seminar, Delft, 6.4..2009

Ozonation of Braunschweig effluent (DOC: 23 mg/L)

Rate constants k_{O_3} and k_{OH}

Substance	рКа	k _{O3} [М⁻¹s⁻¹] рН 7	k _{•он} [М⁻¹s⁻¹] рН 7
Acetbutolol	9.2	$(1.9 \pm 0.6) \cdot 10^3$	$(4.6 \pm 0.7) \cdot 10^9$
Atenolol	9.6	$(1.7 \pm 0.4) \cdot 10^3$	(8.0± 0.5) ⋅ 10 ⁹
Metoprolol	9.7	$(2.0 \pm 0.6) \cdot 10^3$	$(7.3 \pm 0.2) \cdot 10^9$
Propranolol	9.5	1 · 10⁵	$(1.0 \pm 0.2) \cdot 10^{10}$
17α-ethinylestradiol ⁽³⁾	10.4	3 ⋅ 10 ⁶	$(9.8 \pm 1.2) \cdot 10^9$
Atrazine ⁽⁴⁾	1.6	6	2.4 · 10 ⁹

⁽³⁾ Huber et al., *Environ. Sci. Technol.* 2003, 37, 1016-1024.

⁽⁴⁾ Acero et al., *Environ. Sci. Technol.* 2000, *34*, 591-597.

Oxidation products of metoprolol and propranolol

UNESCO-IHE Seminar, Delft, 6.4..2009

Formation of aldehyde moieties m Metoprolol OP 300 at pH 3

UNESCO-IHE Seminar, Delft, 6.4..2009

Isomers of propranolol OPs

UNESCO-IHE Seminar, Delft, 6.4..2009

Proposed OP formation of propranolol at pH 8

UNESCO-IHE Seminar, Delft, 6.4..2009

Identification of propranolol OP 292

UNESCO-IHE Seminar, Delft, 6.4..2009

Reported genotoxicity of aldehydes

Compounds with aldehyde moieties

- interact with DNA ^a (e.g. DNA-protein cross linking)
- show genotoxic and carcinogenic properties

^aKuchenmeister, F. et al. *Res.-Gen. Tox. Environ. Mut.* **1998**, *419*, 69-78. ^bEckl, P. M. et al. *Mut. Res.* **1993**, *290*, 183-192.

UNESCO-IHE Seminar, Delft, 6.4..2009

Number of resistences in enteroccoci detected

Sampling site	Number resistences of 1 colony				Br-	BrO ₃ ⁻	
Sampling Site	5	6	7	8	9	µg/L	µg/L
"urban" influent	+	+	-	-	-		
"rural" influent	-	-	+	+	-		
WWTP effluent	+	+	+	-	-	850	< 15
ozone (8 g/m³)	-	-	-	-	-	850	< 15
ozone (15 g/m ³)	-	-	-	-	-	780	25
	-	-	-	-		•	

<u>Resistences 7,8</u>: Amoxicillin, Clavulanic acid, Ciprofloxacin, Erythromycin, Imipenem, Tertacyclin, Sulfamethoxazole/Trimetoprim, Gentamycin (8)

Cooperation: University Mainz, Kohnen, Schön-Hölz

No resistences found: Vancomycin, Linezolide, Synercide

Membranes

UNESCO-IHE Seminar, Delft, 6.4..2009

Cristal[®]-process and Nanofiltration/RO

Ground water spiked (1 µg/L): carbamazepine, iopromide, ibuprofen, sulfamethoxazole, roxithromycin

Cristal®-process (UF/PAC): Addition 10 mg/L PAC, elimination > 98 % except antibiotic sulfamethoxazole and iopromide (95 %)

UF nano filtration/reverse osmosis (parallel: NF90, XLE, BW30) elimination > 98 % for all substances

Kooperation: Marie-Laure Janex-Habibi, Cirsee Environment, Paris

UNESCO-IHE Seminar, Delft, 6.4..2009

Contamination of RO membrane concentrate

removal of organic contaminants > 95%

ТОС	
WWTP effluent	RO- concentrate
11.6 mg/L	45.8 mg/L

source: Benner et al., 2008, Water Res.

Positive effects of the Comet assay after ozonation of membrane concentrate

cooperation Georg Reifferscheid, BfG

Options for advanced wastewater treatment

result		Energy kWh m ⁻³	Costs € m ⁻³	By products
Piloting	Ozonation	0.1 – 0.3	0.05 – 0.10	Toxicology unknown
Literature, lab scale	RO desalination up to 50 bar	2 – 4	0.2 – 0.3	up to 50% concentrate
	RO/NF low salt 5 – 30 bar	0.5 – 3	0.1 – 0.25	volume of concentrate?
	Activated carbon (PAC)	<< 0.05	0.10 – 0.20	none
Feasible costs: ≤ 25 €/person/ye (100 m³/(person·year)			ar	

Conclusions

Which "relevant" emerging pollutants" has to be considered? Criterium 1: ecotoxicological or human toxicological relevance Criterium 2: potential to contaminate ground water and drinking water Criterium 3: biological TP fulfilling criteria 1,2

How to determine the success of a measure?

- > Non-detection of a pollutant (sorption, degradation, size exclusion)
- Elimination of relevant TPs (biological, chemical)
- Models to transfer the results to other emerging pollutants or conditions

Which measures are economically and ecologically appropriate?
Minimizing the direct risiks for humans and the environment
Taking into account the global impacts of the measure (green house effect)

Costs should be justified by a success control (criteria: 1-3)

Thank to my research group at BfG

Financial Support EU for funding Poseidon, Neptune, Reclaimwater from the Fifth and Sixth Framework Programme

UNESCO-IHE Seminar, Delft, 6.4..2009

UNESCO-IHE Seminar, Delft, 6.4..2009