Welchen Nutzen / Wert haben die Reststoffe (der neuartigen Sanitärsysteme)

PD Dr. rer.nat Joachim Clemens Dr.-Ing. Heinrich Herbst

3. Workshop02. Dezember 2008Weimar

Einleitung

Stoffströme
Nutzenpotenzial
Schwarzwasser
Braunwasser
Gelbwasser
Grauwasser
Regenwasser
Ausblick

Einleitung

- NASS bedeutet eine Vielzahl von Systemen
- Input in NASS kommt nur aus relativ definierten Quellen (z.B. nur aus Haushalten)
- Herkunft der Schadstoffe bekannt:
 - → Braun/Schwarz/Gelbwasser: Ernährung, Medikamente
 - → Grauwasser: Waschmittel
- Der Output aus NASS wird als Produkt angesehen
- Input in konventionelles System ist nicht n\u00e4her definiert

Einleitung

Stoffströme
Nutzenpotenzial
Schwarzwasser
Braunwasser
Gelbwasser
Grauwasser
Regenwasser
Ausblick

Konzentration und Verdünnung

- Nährstoffe gelangen zum Menschen in konzentrierter Form.
- Sie werden von der Fläche aufkonzentriert und in die Stadt transportiert.
- Durch die "Benutzung" werden sie in Form von Abwasser und Abfall verdünnt.
- Das Gleiche gilt für Waschmittel, Medikamente etc.

Justus von Liebig "Landwirtschaft und Canalisation der Städte (1876)"

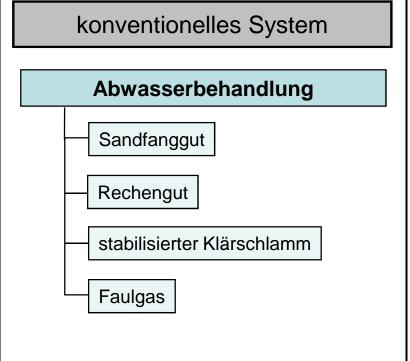
- "Würden zu dem täglichen Beitrag, der sich in London ergebenden Canalflüssigkeit… 75 Tonnen Phosphorsäure… hinzugefügt …so erhielte man eine Mischung, die …. 2.650 Tonnen Stalldünger und 652 Tonnen Peruguano entspricht."
- "...wird es nöthig sein, diesselbe (hier: die Canalflüssigkeit) dahinzuleiten, nämlich auf das platte Land, wo sie unmittelbare Verwendung finden kann..."
- "Voraussichtlich werden Einrichtungen dieser Art....grosse Summen kosten,... Allein einmal muss dies geschehen (um die Landwirtschaft weiter zu betreiben)"

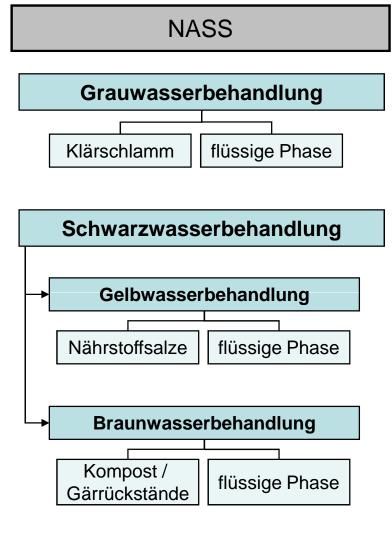
Reststoffe der häuslichen Abwasserbehandlung

Einleitung

Stoffströme

Nutzenpotenzial Schwarzwasser


Braunwasser


Gelbwasser

Grauwasser

Regenwasser

Ausblick

Einleitung

Stoffströme

Nutzoppotopzio

Nutzenpotenzial Schwarzwasser Braunwasser

Gelbwasser Grauwasser

Regenwasser Ausblick

Nutzen der Reststoffe im konventionellen Systemen

Sandfanggut

(6 L/(E*a) u. Dichte 1,6 Mg/m³ (WAGNER, 2004); Deponie 35-155 €/Mg entspr.1,5 €/(E*a))

im Wegebau bei geringer org. Belastung oder Deponierung

Rechengut

(6 L/(E*a) u. Dichte 0,6 Mg/m³ (WAGNER, 2004), Kosten Verbrennung 95-480 €/Mg entspr. 2 €/(E*a)

Co-Fermentation

Klärschlamm

(ca. 20 kg TS/(E*a) mit 280 €/Mg TR entspr. ca. 6 €/(E*a))

- anaerobe Stabilisierung Erzeugung von Biogas ab Anlagen > 10.000 E (Biogas zur Erzeugung thermischer u. elektrischer Energie)
- thermische Entsorgung (Mitverbrennung, Monoverbrennung)
- landwirtschaftliche Nutzung (Landschaftsbau, Landwirtschaft)

Welche Produkte gibt es?

Einleitung

Stoffströme

Nutzenpotenzial Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser

Ausblick

Schwarzwasser

ausgefault: Schlamm, Biogas, Schlammwasser

kompostiert: Kompost, Sickerwasser

Braunwasser

ausgefault: Schlamm, Biogas, Schlammwasser

kompostiert: Kompost, Sickerwasser

Gelbwasser

- Restwasser
- Nährstoffsalze

Grauwasser

- schwach belastetes Grauwasser: hochwertiges Brauwasser
- stark belastetes Grauwasser: "konventionelles Abwasser"

Regenwasser

nicht behandlungsbedürftiges Regenwasser: Brauchwasser

Welchen Nutzen gibt es?

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser Braunwasser Gelbwasser

Gelbwasser Grauwasser Regenwasser Ausblick Wasser: 1,5 €/m³ bzw. 0,2 €/(E*d) (in Anlehnung an Trinkwasserkosten)

Humus: 0 €/kg (in Deutschland)

Nährstoffe (spezifische Kosten als Richtwert)

N 1,35 €/kg P 1,5 €/kg K 0,5 €/kg S 0,6 €/kg

Energie (Biogas):
 200 L CH₄/kg CSB bzw. 2 kWh/kg CSB

Verschiedene Produkte aus NASS

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser
Braunwasser
Gelbwasser
Grauwasser
Regenwasser
Ausblick

	Realisation	Volumen [l/(E*d)]	CSB [g/l]	N [g/l]	P [g/l]	K [g/l]	S [g/l]
Gärrest Schwarzwasser- behandlung	(+)	8	4,4	1,3	0,19	0,4	0,1
Gärrest Braunwasser- behandlung	(+)	8	3,8	0,2	0,06	0,09	0,02
Kompost Faezes Kompost Fäkalien	+	0,2 0,2	105 123	6,8 17,9	2,5 3,8	3,5	1,0 2,3
Grauwasser	_	10,7	_	0,1	0,05	0,1	0,25
Urin behandelt	+	1,4	5	8,30	0,8	1,9	1,6
Urevit	+	1,4	10	9,1	0,7	5,7	2,5
Struvit	+			60 (g/kg)	130 (g/kg)		
Ammoniumsulfat	+			bis 90			bis 60

Nutzenpotenzial

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser
Braunwasser
Gelbwasser
Grauwasser
Regenwasser
Ausblick

	Schwarz- wasser	Mineraldünger in Deutschland	Anteil	Wert
	Gg/a	Gg/a	%	Mio. €
N	300	1.785	17	405
P	40	121	33	60
K	80	345	23	40
	Summe			505

Annahme: 60 Mio. EW in Deutschland

Nutzenpotenzial – Vergleich Schwarzwasser + Gülle

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser
Braunwasser
Gelbwasser
Grauwasser
Regenwasser
Ausblick

	Schwarz- wasser	Gülle in Deutschland	Anteil
	Gg/a	Gg/a	%
N	300	1.158	26
P	40	260	15
K	80	1.160	7

Eurich-Menden, 1997

Schwarzwasser

Einleitung Stoffströme

Nutzenpotenzial Schwarzwasser

Gelbwasser Grauwasser Regenwasser Ausblick

Braunwasser

Wertstoffe

Wasser:	2.900	$L/(E^*a)$ (Wert = 0)
N:	5,1	kg/(E*a)
P:	0,8	kg/(E*a)
K:	0,6	kg/(E*a)
S:	0,2	kg/(E*a)

Wert an Nährstoffen: 6,7 – 7,3 €/(E*a)

Bemerkungen

- Mineralisch organischer Dünger
- Geringe N\u00e4hrstoffkonzentration (weniger als G\u00fclle)
- hohe hygienische Verunreinigung
- hohe Belastung mit organischen Mikroverunreinigungen

Nutzen von Schwarzwasser

Einleitung Stoffströme

Nutzenpotenzial Schwarzwasser

Braunwasser
Gelbwasser
Grauwasser
Regenwasser
Ausblick

- Kompostierung
 - hohe Anteile an Nährstoffen P, N,
 - Bodensubstrat, da organischer Kohlenstoff
- Vergärung
 - Biogas ca. 26 kWh/(E*a)
 - hohe Anteile Nährstoffe P, N
 - Bodensubstrat wie Gülle
- Offene Fragen
 - Restabwässerentsorgung
 - organische Schadstoff
 - hygienische Belastung

Braunwasser

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser

Ausblick

Wertstoffe

Wasser:	2.900	L/(E*a) (Wert = 0)
N:	0,8	kg/(E*a)
P:	0,3	kg/(E*a)
K:	0,1	kg/(E*a)
S:	>0,1	kg/(E*a)

Wert als Düngemittel: 1,2 €/(E*a)

Bemerkungen

- Mineralisch organischer Dünger
- sehr geringe Nährstoffkonzentration (weniger als Gülle)
- hohe hygienische Belastung
- geringe Belastung mit organischen Mikroverunreinigungen

Nutzen von Braunwasser

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser Grauwasser Regenwasser Ausblick

Kompostierung

- Nährstoffe P, N,
- Bodensubstrat

Vergärung

- Biogas ca. 26 kWh/(E*a)
- Nährstoffe P, N
- Bodensubstrat wie Gülle

Offene Fragen

- Restabwässerentsorgung
- organische Schadstoffe
- hygienische Belastung

Gelbwasser

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser

Ausblick

Wertstoffe

Wasser:	500	$L/(E^*a)$ (Wert = 0)
N:	3,8-4,2	kg/(E*a)
P:	0,4	kg/(E*a)
K:	1,0	kg/(E*a)
S:	0,8	kg/(E*a)

- Wert als Düngemittel: 6,7- 7,3 €/(E*a)
- Bemerkungen
 - mineralischer Dünger
 - relativ hohe N\u00e4hrstoffkonzentration (mehr als G\u00fclle)
 - geringe hygienische Belastung
 - relativ hohe Belastung mit organischen Mikroverunreinigungen

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser Braunwasser

Gelbwasser

Grauwasser Regenwasser Ausblick

Nutzen des Urin bei indirekter Nutzung

- Gewinnung von Magnesium-Ammonium-Phosphat (MAP)
 - Wert ca. 480 €/Mg MAP (unhydriert)
 - MAP geringe Belastung mit Schwermetallen und Mikroverunreinigungen
- Reststoff (Abwasser) hoch mit Ammonium befrachtet
 - Rückgewinnung durch Strippung
 - Produkt Ammoniumsulfat : Wert 170 €/Mg (8% N und 6% S)
- Offene Fragen:
 - Kosten für Fällung und Strippung
 - kaliumreiches Restwasser
 - Mikroverunreinigungen im Restwasser
 - geringe Schadstoffbelastung des MAP

Grauwasser

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser Ausblick

Wertstoffe

Wasser:	27.400	I/(E*a)
N:	0,4	kg/(E*a)
P:	0,2	kg/(E*a)
K:	0,4	kg/(E*a)
S:	1,0	kg/(E*a)

Wert: 20 €/(E*a)
 (in Anlehnung an Trinkwasser und Recyclingquote 50%)

Bemerkungen

- als Gesamtstrom nicht nutzbar nur mit hohem Aufwand Teilstromaufbereitung möglich
- kaum Nährstoffe enthalten
- hohe CSB-Belastung
- organische Mikroverunreinigungen (Medikamentenrückstände (medizinischen Salben), Rückstände aus Personal-Care-Products)

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser Braunwasser

Gelbwasser

Grauwasser

Regenwasser Ausblick

Nutzen von Grauwasser bei Differenzierung des Stoffstroms

- stark belastetes Grauwasser (35 L/(E*d)
 - aus Waschmaschinen
 - aus Spülmaschinen
 - und Küchenabwasser
- schwach belastetes Grauwasser (40 L/(E*d)
 - aus Badewannen
 - aus Duschen und
 - aus Handwaschbecken
- → zur Aufbereitung geeignet
 - Aufbereitungsverfahren abhängig von der Nutzung
 - je höherwertig die Nutzung desto höher der "Wert" des Wassers (→ die Kosten der Behandlung)

Stoffströme

Einleitung

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser Ausblick

Nutzungsmöglichkeiten Qualitätsstandards Kosten

Nebenanlagen

- Ableitungssystem
 - Investitionskosten 260 €/E
- Versorgungssystem
 - Investitionskosten 450 €/E
- Druckerhöhung
 - Investitionskosten IK = 103 * EW^{-0,1257} [€/E]
 - Energiebedarf 0,3 0,5 kWh/m³ i.M. 6 kWh/(E*a)
- UV-Anlage
 - Investitionskosten IK = 734 * EW-0.5819 [€/E]
 - Energiebedarf 0,04 0,1 kWh/m³ i.M. 1 kWh/(E*a)
 - Verschleiß 66 €/(E*a)

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser Ausblick

Nutzung: Versickerung und Einleitung

Qualität:

- WHG,
- AbwaV,
- RL76/160/EWG, (Badegewässerrichtlinie)
- RL 2006/7/EG, (neue Badegewässerrichtlinie)

Technik:

Pflanzenkläranlage, Bodenfilter

Kosten:

- Investitionskosten IK = 21.653 * EW^{-0,6164} [€/E]
- Energiebedarf 0,52 kWh/m³ i.M. 18 kWh/(E*a)
- Verschleiß 3 % der Gesamtkosten.

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser Braunwasser Gelbwasser

Grauwasser

Regenwasser Ausblick

Nutzung: Bewässerungswasser

Qualität:

DIN 19650 mit unterschiedlichen Teilen

Technik:

 Pflanzenkläranlage, Bodenfilter, Festbettanlage, Rotationsscheibentauchkörper

Kosten:

- Festbettanlage
 - Investitionskosten IK = 958 * EW-0,2418 [€/E]
 - Energiebedarf 0,5 2 kWh/m³ i.M. 18 kWh/(E*a)
 - Verschleiß 3 % der Gesamtkosten
- Rotationsscheibentauchkörper
 - Investitionskosten IK = 605 €/E bei Anlagen > 150 E; kleinere wie Wirbelbett
 - Energiebedarf 0,5 2 kWh/m³ i.M. 18 kWh/(E*a)
 - Verschleiß 3 % der Gesamtkosten

Nutzung: Toilettenspülwasser

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser Ausblick

Qualität:

- Senatsverwaltung f
 ür Bau- und Wohnungswesen Berlin
- RL 76/160/EWG
- RL 2006/7/EG

Technik:

- SBR (z.B. Festbettanlage) , Biofilmverfahren (z.B. Rotationsscheibentauchkörper) + ggf UV
- Membranbiologie

Kosten:

- Membranbiologie
 - Investitionskosten IK = 1.661 * EW^{-0,4846} [€/E]
 - Energiebedarf ca. 6 kWh/m³ i.M. 88 kWh/(E*a)
 - Verschleiß 3 % der Gesamtkosten
- UV Anlage
 - Investitionskosten IK = 734 * EW-0,5819 [€/E]
 - Energiebedarf 0,04 0,1 kWh/m³ i.M. 1 kWh/(E*a)
 - Verschleiß 66 €/(E*a)

Kosten nach Herbst, 2008

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser Ausblick

Nutzung: Wasch- bzw. Geschirrspülmaschinen

Qualität:

- RL 76/160/EWG
- RL 2006/7/EG
- TrinkwV

Technik:

- SBR (z.B. Festbettanlage) + UV
- Membranbiologie + UV
 - Temperatur bei Nutzung > 60 °C oder nur erste
 Waschgänge

Kosten:

 wie Nutzung Toilettenabwasser zzgl. UV-Anlage und Beschränkung der Technischen Anlagen

Regenwasser

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser

Ausblick

Inhaltsstoffe

pH:	5,2 – 7,5 [-]
S:	5,1 – 139 mg/L
Pb:	0.09 - 0.3 mg/L
Zn:	0.04 - 0.5 mg/L
Cu:	0.01 - 0.2 mg/L

- Wert: aufbereitet ähnlich Trinkwasser (1,5 €/m³)
- Bemerkungen
 - in Menge und zeitlichem Anfall sehr inhomogen
 - ggf. hohe Belastung mit Schwermetallen
 - organische Verunreinigungen
 - Schadstoffbelastungen aus der Luft

Einleitung Stoffströme

Nutzenpotenzial

Schwarzwasser

Braunwasser

Gelbwasser

Grauwasser

Regenwasser

Ausblick

Definition von schwach belastetem Regenwasser (Nutzung)

- "Dachflächen", mit und ohne üblichen Anteilen an unbeschichteten Metallen wie Kupfer, Zink, Blei. Gründächer, Terrassenflächen, Wiesen und Kulturland (~ Kategorie 1+2+3 in DWA A 138)
- "Hofflächen", PKW-Parkplätze ohne häufigen Fahrzeugwechsel, Garagenzufahrten, wenig befahrene Verkehrsflächen (DTV < 300 Kfz/24h), Gehwege, Radwege (~ Kategorie 4+5 in DWA A 138)
- "Straßen" mit DTV 300-5.000 Kfz, wie Anlieger-,
 Erschließungs- und Kreisstraßen (entspricht Kategorie 6 in DWA A 138)
- Nutzungen wie aufbereitetes Grauwasser i.d.R. geringerer Behandlungsaufwand

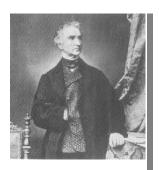
Weitergehende Aspekte?

Einleitung
Stoffströme
Nutzenpotenzial
Schwarzwasser
Braunwasser
Gelbwasser

Grauwasser

Regenwasser

Ausblick


Wertstoffe

- Ausbringtechnologie
- Konzentration bedingt die Transportwürdigkeit
- Akzeptanz

Schadstoffe

- Schadstoffflüsse werden vom Vorfluter zum Boden verlagert
- Bezüglich des Umweltverhaltens besteht noch Forschungsbedarf
- Hygieneanforderungen sind einfacher zu lösen

In Anlehnung an Justus von Liebig "Landwirtschaft und Canalisation der Städte (1876)"

 "Voraussichtlich werden Einrichtungen dieser Art (zum Nährstoffrecycling)....grosse Summen kosten.... Allein einmal muss dies geschehen... (um die Landwirtschaft weiter zu betreiben)"

→ Dies gilt nicht nur für die Wiederverwertung der Nährstoffe, sondern auch für evtl. notwendige Schadstoffentfrachtung

Weitergehende systemische Aspekte einer Nutzung

Einleitung
Stoffströme
Nutzenpotenzial
Schwarzwasser
Braunwasser
Gelbwasser
Grauwasser
Regenwasser

Ausblick

- Zusammenführung häuslicher Abwässer und gewerblicher/industrieller Abwässer
 - Schwierigkeiten der Behandlung?
 - Inhaltsstoffe?
 - Nutzenpotenziale (derzeit nicht abschätzbar)?
- Technischer Aufbau von Nutzungskaskaden in Abhängigkeit der Siedlungsstrukturen
 - Grad der Dezentralisierung von Anlagen
 - Qualitätssicherung der Anlagen und recycelten Stoffströmen

Einleitung Stoffströme Nutzenpotenzial Schwarzwasser Braunwasser Gelbwasser Grauwasser Regenwasser Ausblick

Zusammenfassung

- Der Wert in NASS-Produkten beträgt jährlich mehrere 100 Mio €
- Der Wert der Nährstoffe in Schwarzwasser ist größer als der der Energie
- Struvit und Ammoniakwasser bzw. Ammoniumsulfat sind weitgehend frei von Schadstoffen
- Bei allen anderen Produkten sind organische Mikroverunreinigungenn mit den Nährstoffen vermischt - Forschungsbedarf
- Die Aufbereitung von Nutzwasser ist technisch problemlos und am Markt verfügbar
- Systemdenken muss erweitert werden

Systemintegration in Zukunf?

Einleitung
Stoffströme
Nutzenpotenzial
Schwarzwasser
Braunwasser
Gelbwasser
Grauwasser
Regenwasser
Ausblick

Folgende pics von Quelle: http://www.verticalfarm.com/

Systemintegration in der Zukunft?

Einleitung
Stoffströme
Nutzenpotenzial
Schwarzwasser
Braunwasser
Gelbwasser
Grauwasser
Regenwasser
Ausblick

3. Workshop Weimar 02.12.2008 Welchen Nutzen / Wert haben die Reststoffe neuartiger Sanitärsysteme

Vielen Dank für Ihre Aufmerksamkeit!

Ausblick

Definition

Rohrleitungstechnik

Nutzungen

Aufbereitungstechnik

Auswirkungen

Ausblick

- Vergleich der Rest –und Wertstoffe im konventionellen System und NASS
- Kosten der Entsorgung
- "Wert" der Reststoffe
- Qualität der Reststoffe Schadstoffpotenziale

Definition von Grauwasser

Definition

Rohrleitungstechnik

Nutzungen

Aufbereitungstechnik

Auswirkungen Ausblick

Grauwasser:

 Gemäß DIN 4045 ist Grauwasser als häusliches Schmutzwasser ohne fäkale Feststoffe und Urin (Schwarzwasser), wie z.B. Abwasser von Bade- und Duschwannen, Handwaschbecken und Küchenspülen, definiert. (DIN 4045, 2003)

Aufbereitetes Grauwasser:

 Gewerblichen, industriellen, landwirtschaftlichen oder ähnlichen Zwecken dienendes Wasser mit unterschiedlichen Güteeigenschaften, worin Trinkwassereigenschaften eingeschlossen sein kann, ist gemäß DIN 4046 Betriebswasser. (DIN 4046, 1983)

Ggf Hinweise zur Stoffbelastung 2 Sätze,

Kann entfallen wenn Martin O. das in seinem Vortrag mitnimmt

Definition von Grauwasser

Definition

Rohrleitungstechnik

Nutzungen

Aufbereitungstechnik

Auswirkungen Ausblick

Schwach belastetes Grauwasser

- Bade- bzw. Duschwasser und Wasser aus dem Handwaschbecken
- Stark belastetes Grauwasser
 - Nicht separiertes Grauwasser aus der Küche, der Waschmaschine und Bade bzw. Duschabwasser sowie Wasser aus Handwaschbecken
 - Grauwasser aus dem Bereich der Küche und aus der Geschirrspülmaschine
 - Grauwasser aus Waschmaschinen

Ggf Hinweise zur Stoffbelastung 2 Sätze,

Kann entfallen wenn Martin O. das in seinem Vortrag mitnimmt

Definition Rohrleitungs-technik

Nutzungen

Aufbereitungstechnik

Auswirkungen Ausblick

Nutzungsmöglichkeiten und mögliche Qualitätsstandards

- Versickerung oder Einleitung in das Gewässer
 - WHG (Versickerung),
 - Abwasserverordnung, Ortssatzung, EU-Badegewässerrichtlinie (RL 75/160/EWG, 1975, RL2006/7/EG, 2006) (Einleitung)
- Nutzung als Bewässerungswasser
 - DIN 19650 für uneingeschränkt und eingeschränkte Verwendung
- Nutzung als Toilettenspülwasser
 - EU-Badegewässerrichtlinie (RL 75/160/EWG, 1975, RL2006/7/EG, 2006)
 - Betriebswassernutzung in Gebäuden (Senatsverwaltung für Bauund Wohnungswesen Berlin, 1995)
- Teilnutzung für Wasch- bzw. Geschirrspülmaschinen
 - EU-Badegewässerrichtlinie (RL 75/160/EWG, 1975, RL2006/7/EG, 2006)
 - Trinkwasserverordnung (im öffentlichen Bereich)

Definition Rohrleitungstechnik

Nutzungen

Aufbereitungstechnik

Auswirkungen

Ausblick

Auswirkungen der Grauwassernutzung auf die bestehenden Systeme der Abwasserentsorgung

- Grauwasseranfall ca. 75 L/(E*d) ca. 60 % des häuslichen Abwassers (125 L/(E*d))
- recycelfähiges Grauwasser 45 L/(E*d) ca.36 % des häuslichen Abwassers
- bei flächendeckender Umsetzung
 - Kanalablagerungen / Querschnittsformen
 - Modifizierung des Kanalnetzes
- bei punktueller Einsatz von Grauwasser als Trinkwassersubstitut
 - keine negativen Auswirkungen
- wirtschaftlich derzeit nur bei Neubau bzw. Kernsanierung von Gebäuden bzw. Siedlungen

Belebungsverfahren: suspendierte Biomasseverfahren: MBR

Definition


Rohrleitungstechnik

Nutzungen

Aufbereitungstechnik

Auswirkungen Ausblick

Parameter	Ablauf	TrinkwV	Berliner Merkblatt
Leitfähigkeit	572 μS/cm	< 2.500 µS/cm	-
Trübung	0,2 NTU	< 1 NTU	-
BSB₅	< 5 mg/L	-	< 4,4 mg/L
CSB	15 mg/L	-	-
Sauerstoffgehalt	8,6 mg/L	> 5 mg/L	-
Gesamtcoliforme Bakterien	0/100mL	0/100mL	< 10.000/100mL
Fäkalcoliforme Bakterien	keine Angabe	-	< 1.000/100mL
Enterrokokken	keine Angabe	0/100mL	
E. coli	0/100mL	0/100mL	-
Pseudomonas aeruginosa	keine Angabe	0/250mL	<1/100mL

Belebungsverfahren: suspendierte Biomasseverfahren: MBR

Definition Rohrleitungs-

Nutzungen

technik

Aufbereitungstechnik

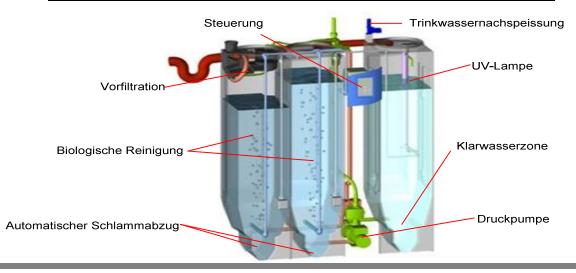
Auswirkungen Ausblick

Hersteller/Anbieter	Тур	Leistung	Fläche	Porengröß e
Huber AG	HUBER MembraneClearBox®	variabel	14 m ² /Modul	150 kDa nominal
Martin Systems	FM 6	variabel	6,25 m²/Modul	0,1 µm
GEP Umwelttechnik	WME 4 GWA 1 GWA 6	0,3 m³/d 1 m³/d 8 m³/d 0,3 m³/d		0,05 µm
GEO TERRA	Typ 1.1 Typ 6.2GWA 1 GWA 6	0,51 m³/d 8 m³/d m³/d 6 m³/d		

Belebungsverfahren: sessile Biomasseverfahren Wirbelbett

Definition

Rohrleitungstechnik


Nutzungen

Aufbereitungstechnik

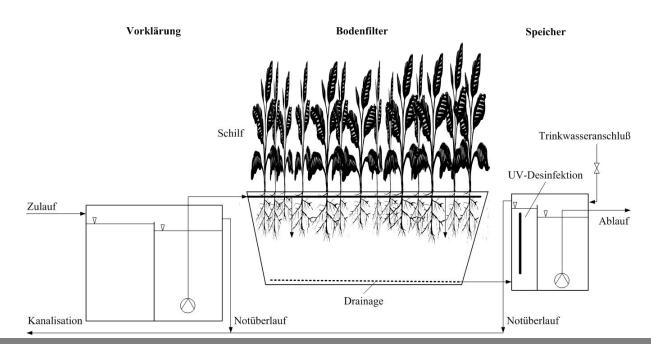
Auswirkungen Ausblick

SBR-Wirbelbett Fa. Pontos

Parameter	Ablauf	TrinkwV	Berliner Merkblatt
BSB ₇	4,4 mg/L	-	<5 mg/L
CSB	18,7 mg/L	-	-
Sauerstoffsättigung	70,3 %	-	>50 %
UV-Transmission bei 254mm	89,1 %	-	>60 %
Gesamtcoliforme Bakterien	< 3/100mL	0/100mL	< 10.000/100mL
Fäkalcoliforme Bakterien	< 3/100mL	-	< 1.000/100mL
Enterrokokken	keine Angabe	0/100mL	
E. coli	keine Angabe	0/100mL	
Pseudomonas aeruginosa	< 3/100mL	0/250mL	< 1/mL

Definition

Rohrleitungstechnik


Nutzungen

Aufbereitungstechnik

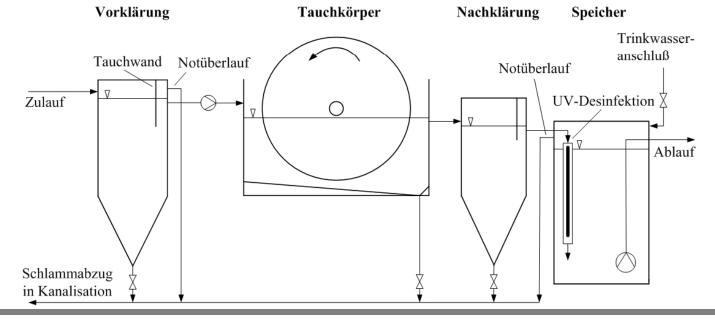
Auswirkungen Ausblick

Naturnah: bewachsene Bodenfilter

- geeignet für Grauwasserbehandlung, –aufbereitung und auch Regenwasseraufbereitung
- Auslegungsgrößen:
 - Filterfläche
 2-2,5 m²/E
 - Referenzen: Flintenbreite, Lambertsmühle

Definition

Rohrleitungstechnik


Nutzungen

Aufbereitungstechnik

Auswirkungen Ausblick

Belebungsverfahren: sessile Biomasseverfahren Rotationsscheibentauchkörper

Parameter	Ablauf	TrinkwV	Berliner Merkblatt
BSB ₇	< 3 mg/L	-	< 5 mg/L
TOC	1,5- 2,0 mg/L	-	-
Sauerstoffsättigung	> 70 %	-	> 50%
Gesamtcoliforme Bakterien	< 10/100mL	0/100mL	< 10.000/100mL
Fäkalcoliforme Bakterien	< 10/100mL	-	< 1.000/100mL
Enterrokokken	keine Angabe	0/100mL	
E. coli	< 3 /100mL	0/100mL	-
Pseudomonas aeruginosa	< 1 /100mL	0/250mL	<1/mL

Vor- und Nachteile der Verfahren in Abhängigkeit der Nutzung: Toilettenspülung

Definition

Rohrleitungstechnik

Nutzungen

Aufbereitungstechnik

Auswirkungen Ausblick

Nutzung:	Toilettenspülung								
Qualitäts-anforderung:	Berliner Merkblatt "Betriebswassernutzung in Ge-bäuden"; (SENATSVERWALTUNG FÜR BAU- UND WOHNUNGSWESEN BERLIN, 1995) EU-Badegewäs-serrichtlinie (RL 75/160/EWG, 1975 bzw. RL2006/7/EG, 2006)								
Verfahren (Anlagenbauer)	Vorteile	Nachteile							
Bodenfilter	 geringe Betriebskosten geringer Energiebedarf 	 hoher Platzbedarf Desinfektion erforderlich eingeschränkter Keimrückhalt um 1- 2 log-Stufen, ggf. weitere Hygienisierung erforderlich, um die Anforderungen aller Klassen nach DIN 19650 einzuhalten 							
Belebtschlammverfahren (Wirbelbettreaktor)	geringer Platzbedarf	evtl. Desinfektion erforderlich							
Rotations-scheibenkörper	geringer Platzbedarf	evtl. Desinfektion erforderlich							
Membranbioreaktor (MBR)	guter Keimrückhaltgeringer Platzbedarf	 hoher Energiebedarf hohe Betriebskosten Quelle Herbst 2008 							

Definition

Rohrleitungstechnik

Nutzungen

Aufbereitungstechnik

Auswirkungen Ausblick

Vor- und Nachteile der Verfahren in Abhängigkeit der Nutzung: Waschmaschine und Spülmaschine im öffentlichen Bereich

Nutzung:	Öffentlicher Bereich Waschmaschine (nur Waschgänge, Klarspülung mit Trinkwasser) Spülmaschine (nur Waschgänge, Klarspülung mit Trinkwasser)							
Qualitäts-anforderung	keine nutzungsspezifischen Anforderungen daher Rückgriff auf: •TrinkwV (TRINKWV, 2001) •EU-Badegewäs-serrichtlinie (RL 75/160/EWG, 1975 bzw. RL2006/7/EG, 2006))							
Verfahren (Anlagenbauer)	Vorteile	Nachteile						
Membranbioreaktor (MBR)	erprobte Technik sicherer Keimrückhalt	hoher Energiebedarf evtl. Desinfektion erforderlich						
Belebung Nanofiltration (NF)	•theoretisch sicherer Keimrückhalt •für alle Wasch- und Spülgänge geeignet	 hoher Energiebedarf hohe Betriebskosten keine Betriebserfahrungen daher findet die Technikkombination zurzeit keine Anwendung 						
Umkehrosmose (RO)	 niedrige Salzgehalte sicherer Keimrückhalt für alle Wasch- und Spülgänge geeignet 	 nur für große Mengen wirtschaftlich hoher Energiebedarf nur industrielle Anwendung zur Betriebswas-ser-auf-be-reit-ung hohe Betriebskosten 						
MBR + RO	 niedrige Salzgehalte sicherer Keimrückhalt für alle Wasch- und Spülgänge geeignet 	 hoher Energiebedarf hohe Betriebskosten keine Betriebserfahrungen daher findet die Technikkombination zurzeit keine Anwendung 						

Definition von schwach belastetem Regenwasser (Nutzung)

Definition

Rohrleitungstechnik

Nutzungen

Aufbereitungstechnik

Auswirkungen Ausblick

Chemisch-physikalische Beschaffenheit	Einheit	"Dachflächen" Kategorie A	Autor	"Hofflächen" Kategorie B	Autor	"Straßen" Kategorie C	Autor
рН	[-]	5,2-7,7 / 6,2 / 7,16	A, C, F	7,4	D	7,4 / 6,4 / 7,3-7,5	B, C, F
Schweb-stoffe / AFS	[mg/L]	65 / 60 / 34	A, C	74-150	D	100 / 150 / 66-176	C, D, F
Leitfähigkeit	[µS/m]	80 / 30 / 91,7	C, F, H			74-1360 / 490-2436 / 110	C, F, G
BSB ₅	[mg/L]	02. Dez	D			2-4 / 11 / 6,39	C, D, F
CSB	[mg/L]	22 / 19 / 30,8	C, F, H	70	D	49 / 70 / 14,2	C, D, F
тос	[mg/L]	9,1 / 4,44 / 0	A, F, H			22-31	F
Sulfate	[mg/L]					5,1-139	F
Chlorid (als CL ⁻)	[mg/L]	D) District of (0000)		O) F l (0000)		131-669	F

A) Boller (1997)

D) Geiger et al. (2004)

G) Nolde (2006)

B) Dierkeset al. (2006)

E) Kobencic (2002)

H) Sommer (2004)

C) Fuchs (2006)

F) Nadler et al. (2001)

I) Welker et al. (2005)

