

How fast do pits fill up? Empirical evidence and mathematical models

Which pit processes need to be considered in a model

- Filling
 - Faeces, urine, toilet paper, household waste
- Biodegradation
 - Aerobic surface layer
 - Anaerobic when covered
- Water transfer
 - Exchange with groundwater
 - Site specific

Overview of investigation

- Material balance model
 - Addition, biodegradation, accumulation
- Detailed field measurements
 - 2 pits sampled during emptying
 - COD, water and ash profiles
- Additional measurements
 16 pits in eThekwini
- Filling rates from other SA studies

Structure of pit filling model

Fine sludge	Coarse refuse		
Biodegradable	Un-biodegradable	Un-biodegradable	
Organic	Organic ash	on biodegradable	
F i	ne sludge	Coarse refuse	
Biodegradable Organic	Un-biodegradable Drganic ash	• Un-biodegradable	
	Fine sludge Biodegradable Organic	Fine sludgeBiodegradableUn-biodegradableOrganicOrganicashImage: Colspan="4">Image: Colspan="4"	

(Relative volume changes not to scale)

Model equations

$$V(t,T) = R_u \cdot T \int_t^T f_u(\tau) \cdot \phi(\tau) d\tau$$

$$V(t,T) = R_u \left[\left(1 + k \frac{\nu_{b0}}{\nu_{u0}} \right) (T-t) + \left((1-k) \frac{\nu_{b0}}{\nu_{u0}} \right) \frac{(e^{-rt} - e^{-rT})}{r} \right]$$

$$\beta(\theta) = \frac{v_{b}(\theta)}{v(\theta)} = \frac{v_{b0} \cdot e^{-r\theta}}{v_{u0} + k \cdot v_{b0} + (1-k)v_{b0} \cdot e^{-r\theta}}$$

$$\frac{v_{b0}}{v_{u0}} e^{-r\theta}$$

$$\frac{v_{b0}}{v_{u0}} e^{-r\theta}$$

$$\frac{v_{b0}}{v_{u0}} e^{-r\theta}$$

Assumptions in model definition

- Surface material is *effective* feed
 - Aerobic surface degradation could not be modelled
- Fixed water content (measured average value)
 Water exchange could not be modelled
- Constant addition rate and composition
 - No historical information apart from date of construction

Calibration: how organics change

Calibration: - what's left behind

Scenarios: What does the model predict?

- Pit content depends on user behaviour
- Represented in model as un-biodegradable fraction of feed.
 - -20% by volume for reference pits

Predict pit filling rate and composition
 – Constant refuse addition rate

Accumulated volume: Fine sludge

Average Biodegradable fraction

Average ash fraction

How are filling rates calculated?

- Model focus: changes in fine sludge fraction
- Coarse refuse addition rate estimated independently.
- Coarse refuse assumed unbiodegradable: accumulation rate = addition rate
- Filling rate = rate of accumulation of fine sludge + rate of addition of coarse refuse

Comparing model to filling rate studies

• Undertaken in various parts of SA

 Wide range of rates, represented here by 20th, 50th and 80th percentile values.

• Per person rates unreliable, so compared to model on a per pit basis.

Filling rate comparison

- Model : degradation *after* initial aerobic degradation
- Sophisticated modelling not justified.
- Systematic variation of organics and ash with depth.
- Biodegradable content decreases with age.

Municipal solid waste removal!

- Design emptying cycle/pit depth for
 - required sludge characteristics
 - Max pit life

- Ease of emptying etc.

Acknowledgements

The authors thank the London School of Hygiene and Tropical Medicine (who received a grant from the Bill and Melinda Gates Foundation), the South African Water Research Commission, eThekwini Water and Sanitation Services and Partners in Development (Pty) Ltd for financial and technical support of this work.

Additional slides for questions

MODELLING VIP FILLING RATES

Assumption validation: Water content

Pit latrines in eThekwini

- VIPS inherited when metro formed in 1999
- 45 000 pits emptied by 2011
- Average of 14 years in operation
- Proposed 5 year emptying cycle.

Model parameter values

	Model parameter	Value	units
Rate of addition	Fine sludge (dry)	0.182	ℓ/d
	Fine sludge (wet)	0.942	ℓ/d
	Coarse refuse (dry)	0.025	ℓ/d
	Coarse refuse (wet)	0.13	ℓ/d
Composition	Fine sludge un-biodegradable fraction (dry basis)	21%	m ³ /m ³
	Inorganic ash in sludge (dry basis)	14%	m ³ /m ³

Model parameter values – compare to actual addition

Model parameter		Value	units			
Rate of addition	Fine sludge (dry)	For family of 7 at 300g excreta & ACM per person /day +coarse refuse		0.182	ℓ/d	
	Fine sludge (wet)		2.23ℓ/α	1 0.942	ℓ/d	
	Coarse refuse (dry)			0.025	ℓ/d	
	Coarse refuse (wet)	= 815 {/year		0.13	ℓ/d	
osition	Fine sh Average fill rate ref pits: $<200\ell/year$ 21% m ³ /m ³ Average fill rate 50 th percentile: $\sim320\ell/year$					
Accumulate between ¹ / ₄ and ¹ / ₂ of material added after 14 years						
Pollution Pagagrah Crown						

Elucidating unbiodegradable fractions

- Reference pits
 - Fine sludge: feed = 21% unbiodegradable
 - Coarse refuse: final volume = 25% unbiodegradable
 - Corresponds to about 12% of feed
 - (fraction of total grows as total decreases)
 - Total feed unbiodegradable = 21% of 88% + 12% $\approx 30\%$

