ENHANCED ANAEROBIC DIGESTION AS A SANITATION AND ENERGY RECOVERY TECHNOLOGY

Faecal Sludge Management Conference (FSM2) Durban, South Africa October 29-31, 2012

T. Garoma and C. Williams Department Civil, Construction and Environmental Engineering San Diego State University San Diego, CA

Introduction

- 2.6 billion people lack access to basic sanitation (WHO and UNICEF 2005)
- 2.2 million people, mostly children, die every year (WHO and UNICEF 2000)

Source: GiZ

Introduction (Cont.)

Current sanitation systems are not effective

- Fail to kill pathogenic microorganisms
- Contaminate drinking water supplies
- Serve as breeding grounds for insects
- Generate noxious odors
- Resource recovery is very difficult
- Reliable, inexpensive and sustainable waste treatment technologies

Challenges

- Engineering/technical
- Financial
- Social
- Cultural
- Political

• • • •

Engineering/Technical Challenges

▶ Energy content of human excreta is low

□ 90 g COD per capita per day (USEPA 1999)

≈ 50 L biogas per capita per day

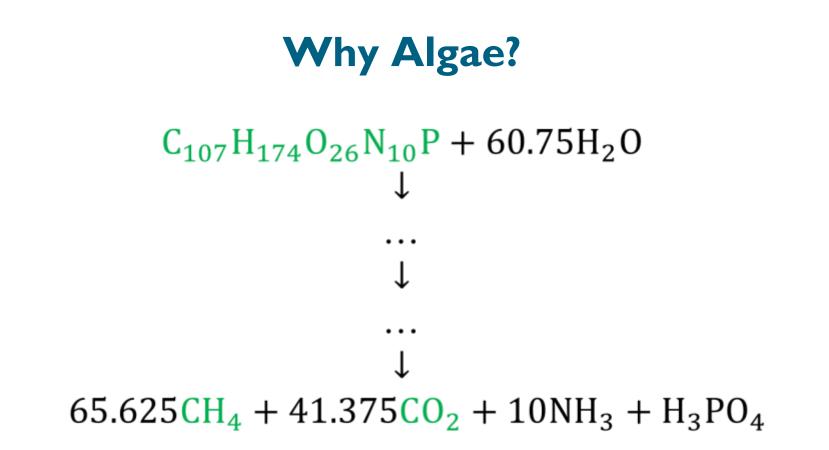
≈ 25% of the cooking energy demand for a household of 5 people (1000 L/household, GiZ 2010)

Energy recovery must be enhanced

Engineering/Technical Challenges (Cont.)

Impractical to control operating parameters

- □ pH
- Temperature
- Alkalinity
- Organic loading rates
- ...
- Design and operating parameters should be established based on anticipated field conditions


Engineering/Technical Challenges (Cont.)

- Operated and maintained by the local
- > Use locally available resources
- Require minimal training
- > Not require complex monitoring equipment

Proposed Technology

We propose a novel enhancement to an existing technology

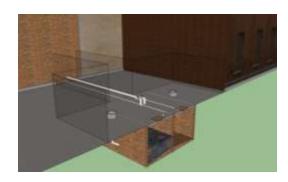
The idea is to enhance and adapt an anaerobic digestion (AD) system that will treat waste and generate a reliable supply of biogas from the codigestion of <u>algal biomass</u> and waste, providing an incentive for a community to adopt and self-sustain the enhanced AD system

Excellent source bioenergy compared other energy crops

Why Algal? (Cont.)

► 650 L CH₄/ kg VS digested for Chollera vulgaris (C. vulgaris)

≈ 93% of the cooking energy demand for a household (70% of biogas is CH_4)

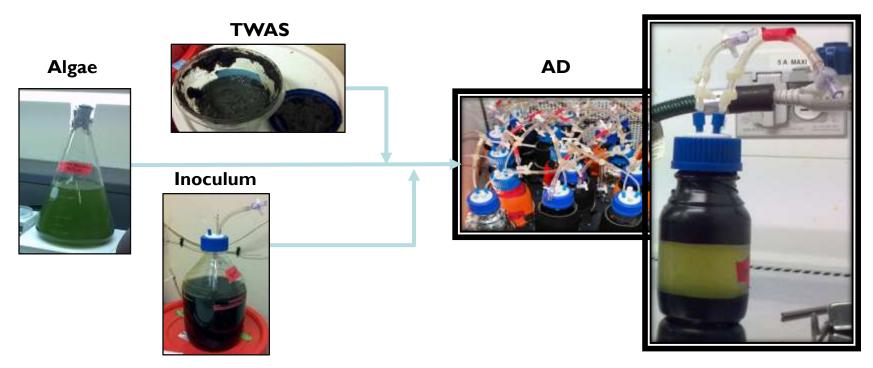

≈ 6.0 kWh/kg of VS digested for *C. vulgaris*

► This is the maximum potential yield

> The <u>actual</u> yield must be determined experimentally

Objectives

- Investigate the potential of algal biomass as a supplementary feedstock to generate a reliable supply of biogas
- Evaluate the effects of operational parameters for the enhanced AD system pertaining to developing countries



Experimental Approach

Lab-scale anaerobic digesters were set-up

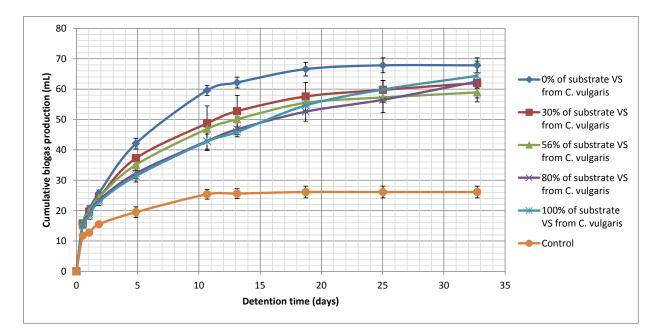
- Thickened waste activated sludge (TWAS)
- **C**. vulgaris
- Inoculum (seed bacteria)

Preliminary Studies

- Determine the ideal substrate (C. vulgaris + TWAS) to inoculum ratio
 - 0.5:1, 1:1, and 1.5:1
 - ≻ |:|
- Establish the appropriate substrate VS loading
 - Low 400 mg per digester or 2 mg/L
 High 1500 mg/L per digester or 7.5 mg/L
 2 mg/L

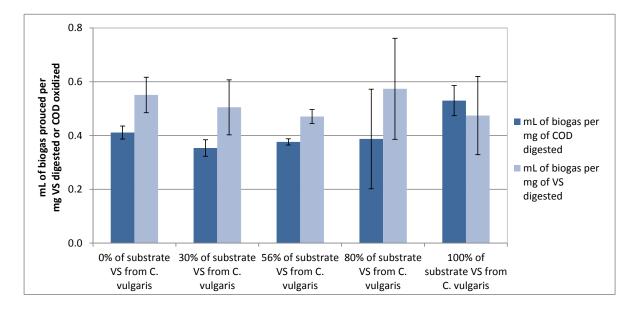
Experimental Conditions

► Contribution *C. vulgaris* to total substrate VS


□ 0, 30, 56, 80, and 100%

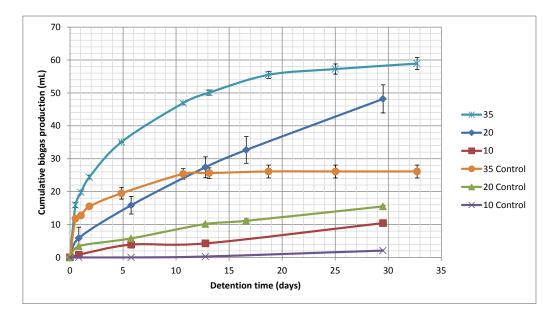
- Effect of temperature
 I0, 20, and 35°C
- Effect of alkalinity

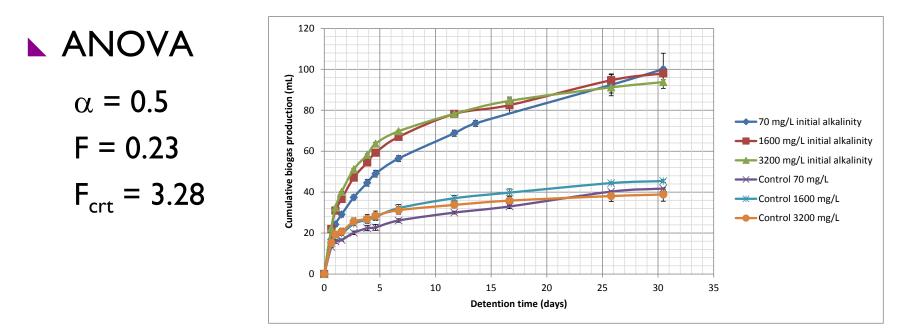
□ 70, 1600, and 3200 mg/L as CaCO₃


Potential of Algae as a Supplementary Feedstock

ANOVA for an α = 0.5 \rightarrow F = 0.43, F_{crt} = 2.53

No significant difference between TWAS and algae as a feedstock


Volume of Biogas Produced per Mass of VS Digested and COD Oxidized


- ► 0.47 to 0.57 mL biogas per mg VS digested ≈ 0.33 to 0.40 mL CH₄ per mg of VS digested
- > Theoretical yield ~ 0.65 L CH₄/ kgVS digested

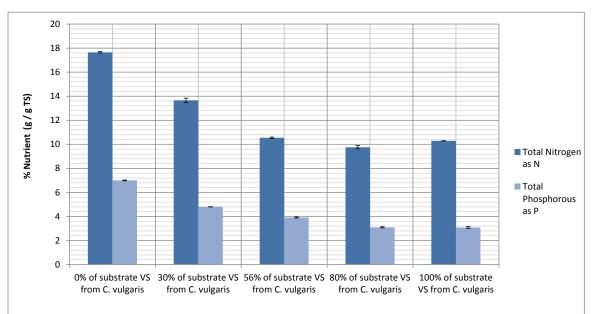
Effect of Temperature

- Biogas production decreased with a decrease in temp
- Biogas production at 20°C is almost same as at 35°C
- Biogas production at 10°C is 80% less than at 20°C

Effect of Alkalinity

- > No significant difference
- ► The alkalinity level increased to 670, 2100, 3450 mg/L as CaCO₃

Effect of Alkalinity (Cont.)


► The increase could be due to ammonification □ $\Delta Alk = 3.57 \Delta N_{am}$

► Algae may also serve as a source of alkalinity

Ammonia is known to inhibit anaerobic microorganisms

Composition of Residual

- TN varied from 9 to 17% as N (g/g TS)
- TP varied from 3 to 7% as P (7 to 16% as P₂O₅)
- Commercial fertilizer
 - Up to 82% as N
 Up to 48% as P₂O₅

Reductions in TS, VS and COD

	0% of substrate VS from C. vulgaris	30% of substrate VS from C. vulgaris	56% of substrate VS from C. vulgaris	80% of substrate VS from C. vulgaris	100% of substrate VS from C. vulgaris
Initial TS (mg/L)	1700	1900	2100	2300	2400
Initial VS (mg/L)	1200	1300	1300	1400	1400
Initial COD (mg/L)	2100	2100	2200	2200	2200
% TS reduction	42	33	30	25	31
% VS reduction	49	51	48	42	51
% COD reduction	40	45	37	39	29

> A VS reduction of 38% or higher was achieved, and therefore, the residuals meet vector attraction reduction requirements for land application

Reductions in Total and Fecal Coliforms

0% of	30% of	56% of	80% of	100% of
substrate	substrate	substrate	substrate	substrate
VS from C.				
vulgaris	vulgaris	vulgaris	vulgaris	vulgaris

Initial TC (CFU/g TS)	7.3x10 ⁶	5.6x10 ⁶	4.1x10 ⁶	2.8x10 ⁶	1.8x10 ⁶
Initial FC (CFU/g TS)	2.4x10 ⁶	1.7x10 ⁶	1.1x10 ⁶	5.8x10 ⁵	1.7x10 ⁵
Final TC (CFU/g TS)	2.8x10 ⁶	5.0x10 ⁵	7.9x10 ⁴	1.2x10 ⁵	2.5x10 ⁵
Final FC (CFU/g TS)	3.2x10 ³	3.2x10 ⁴	1.8x10 ⁴	5.1x10 ³	1.3x10 ⁴
% TC reduction	67.61	69.84	73.12	79.26	90.17
% FC reduction	99.89	93.58	76.90	95.82	94.97

> Residuals meet the EPA requirements for pathogen reduction (FC < 2×10^6 CFU/gTS) for land application

On-going and Future Works

- Conduct addional experiments for extended detention times
- Size the AD systems with multiple capacities on the basis of pupation served [Preliminary]
- ► Validate the bench-scale data with pilot-scale testing

The Potential

- The enhanced AD process can be designed to collect, contain and treat waste in the same reactor, making it suitable for rural and urban communities with no sewer connections
- ▶ It can be built from locally available materials
- Unlike conventional AD systems, the enhanced AD system can be operated and managed by individuals with minimal training and does not require complex monitoring equipment

The Potential (Cont.)

- It is versatile and the design can be modified to fit for communities of all income levels
- Furthermore, it can be scaled to treat waste at any size facility, from a group of households at rural communities to a high rise building in big cities

Concluding Remarks

- The enhanced AD has the potential to be developed into a reliable, inexpensive, and sustainable waste treatment technology with several benefits such as:
 - □ an increase in access to improved sanitation facilities,
 - a reduction in the release of untreated waste to the environment,
 - reduction in deaths from diseases contracted from food and water tainted with fecal matter, and
 - □ the recovery of valuable resources biogas and biosolids.

Acknowledgements

BILL& MELINDA GATES foundation

Thank you!

ENHANCED ANAEROBIC DIGESTION AS A SANITATION AND ENERGY RECOVERY TECHNOLOGY

Faecal Sludge Management Conference (FSM2) Durban, South Africa October 29-31, 2012

T. Garoma and C. Williams Department Civil, Construction and Environmental Engineering San Diego State University San Diego, CA