A unit operations approach for rapid disinfection of human waste based on drying/smoldering of solid and sand filtration/uv disinfection of liquid waste

Zachary Fishman*, Young Mee T. Jung*, Paolo Pironi[#], Michal Krajcovic[#], Samuel Melamed*, Meagan Webb*, Jose L. Torero[#], Jason I. Gerhard[§], Levente L. Diosady*, Yuri Lawryshyn*, Elizabeth Edwards*, Mark T. Kortschot*, <u>Yu-Ling Cheng*†</u>

> Fecal Sludge Management Conference Durban, South Africa October, 2012

Design Objectives/Approach

- RTTC: \$0.05 per person per day; off grid (water, power, sewerage); rapid disinfection
- Contextually appropriate
 - User practices
 - Materials
 - Operation
 - Maintenance

S

Process Overview

Fecal Sludge Management Conference - Durban, South Africa 2012

UNIVERSITY OF TORONTO

V

Surrogate Feces & Diarrhea

Ingredients	Representing	% Weight
Polyethylene glycol	Water-holding	20
Baker's yeast	Bacterial debris	10
Peanut oil	Fat	5
Miso paste	Proteins	30
Cellulose	Dietary fiber	15
Psyllium powder	Dietary fiber	15
Inorganic	Minerals	5

Literature: feces energy content: 21.5 kJ/g dry feces, range: 17.6 - 25.1 kJ/g dry feces

S

Drying Kinetics

TORONTO

Western

Drying to required moisture content in 24 hours is feasible with reasonable belt length.

Feces flattening and splitting to decrease thickness

Smoldering: surface combustion of solid fuel

- Glowing red solids \rightarrow no flames
- Self-sustaining (with continuous fuel)
- Requires oxygen/fuel surface contact
 - permeability of fuel bed important

 \rightarrow Key idea: mixing feces with sand to enhance permeability

Just before ignition

10 minutes

20 minutes

Reaction stops

Smoldering for feces destruction feasible

- Self-sustaining smoldering seen over wide conditions
 - Key: air permeability vs fuel content balance
- Permeability enhanced by:
 - Drier feces (< 0.5 moisture content ideal)
 - Higher sand/feces ratio (optimum ≈ 3.75)
 - Larger sand particles
- Variables can mutually compensate:
 - No sand: need drier feces, higher air flow
 - Higher moisture content: need higher air flow
- Peak T: 600 to 800°C
 - complete feces destruction; sterile sand remaining
- Other considerations:
 - Smoke and odor capture
 - Non-electrical ignition
 - Natural convection

Feces destruction rate: controllable by air flow

<u>Sample design</u> <u>calculation:</u>

- 3 kg/day (~10 person scale)
- If consumption rate
 = 0.2 kg/min/m²
- Then: D = 11.5 cm

UNIVERSITY OF

8

sand filtration: rapid bolus drainage and effective removal of particles > 8 μm

3300 mg/L particles; 2200 mg/L larger than 8 μm

> Diarrheal bolus drains in < 5 min (25 cm diameter)

Clean sand from hopper, conveyed by auger Contaminated sand removal by skimmer onto drying belt to be smoldered

< 10 mg/L particles larger than 8 µm

UVT < 2%

To UV

reactor

Stages of Sand Filtration

TORONTO

UV Disinfection

S

Velocity Profile and UV Intensity Modeling

Western

UV Dose Distribution

TORONTO

15W UV lamp easily achieves 2.5 mJ/cm²

Serente

Proof of concept for each module

- Feces drying to required moisture content in 24 hours is feasible with reasonable belt length.
- Sustainable smoldering demonstrated over wide range of variables, and at controllable smoldering rates
- Sand filtration effectively removes particles larger than 8 µm with reasonable bolus drainage times
- 15W UV lamp should deliver enough UV dose to destroy remaining pathogens in filtrate

Meeting RTTC Criteria

- Rapid disinfection:
 - Solids: < 24 hours drying + hold up time in smoldering reactor
 - Liquids: fast
- Energy budget:
 - 15 W (UV lamp + possible 1.5 W fan)
 - Fuel for smoldering ignition (≤ 2 MJ; ≈ 1 person fecal output per day)
- Cost estimate:
 - Capital: \$0.036 per person per day (10 person scale)
 Prototype components local retail cost ≈ \$1,350.
 - Inexpensive consumables (sand, fuel for ignition)

Understanding the Users

Fecal Sludge Management Conference - Durban, South Africa 2012

Western

understanding the local capacity

Fecal Sludge Management Conference - Durban, South Africa 2012

8

Need to avoid this:

"Simplicity ain't simple!"

New CE

User Interface

Western

Future Plans

- Integrate; simplify mechanical operation
- Capture/make use of heat from smoldering
- Possibly capture clean water
- Simplify user touch points
- Contain odor
- Contain smoldering emissions

