

THE DISINFECTION OF LATRINE FAECAL SLUDGE WITH AMMONIA NATURALLY PRESENT IN EXCRETA

Temitope A. Ogunyoku, PhD and Prof Kara L. Nelson University of California, Berkeley Faecal Sludge Management Durban, South Africa Oct 29, 2012

Temitope.Ogunyoku@berkeley.edu & nelson@ce.berkeley.edu

Sanitation Value Chain

Research Objective

Treat excreta at the point of collection by harnessing ammonia from human waste

 Compatible with downstream treatment and resource recovery

Safe Sludge Disinfection Approach

Research Questions

What is the Hydrolysis Rate of Urea in:

What is the best alkalinizing agent?

Research Questions

What are inactivation rates of pathogen indicator organisms using Safe Sludge Process?

□ How can the Safe Sludge Process be incorporated into toilets?

Hydrolysis Rate of Urea

Pure Urine:

Urease Jack Bean:

Implications of Urine & Jack Bean

- Urease is needed to achieve conversion of urea to ammonia
- Urease from jack bean was not active at pH 12
- It was necessary to raise the pH to 12 to maintain stable alkaline pH

Urease from Jack Bean:

Urease from Feces:

Implications of Jack Bean & Feces

- Natural urease in feces is the best source
- Confirmed that pH 12 is stable
- Urease has minimal activity at pH 12, therefore a two-stage process is necessary for the hydrolysis of urea

Different Ratios Urine to Feces

Urine to Feces Ratio	Total NH ₃ -N (mg/L)
1.3: 1	5,800
2.6: 1	7,400
5.2: 1	9,000
Pure urine*	8,700

* Spiked with urease from jack bean

Which Alkalinizing Agent is Best?

$$NH_4^{+}_{(aq)} + OH_{(aq)}^{-} \leftrightarrow NH_{3(aq)} + H_2O_{(l)}$$

\mathbf{NH}^+	pKa = 9.3	NH_{2} (pII 12)
- • • • 4 (pH /)		3 (PH 12)
	High pH	
	(alkalinizing agent)	

Alkalinizing Agent (6 grams)	pH (water 1:3)	% NH3 @ 24 °C
Limestone (6.35 mm)	8.30	9.96
Limestone (0.354 mm)	7.67	52.3
Biochar (0.354 mm)	9.81	82.3
Ash (0.354 mm)	10.1	86.7
Calcium Hydroxide (0.044 mm)*	12.7	99.9

*2 % by weight of Ca(OH)₂ is needed to maintain pH 12

Inactivation Rates of Pathogens

Inactivation Rates: 1.3:1 Slurry

Inactivation Rates: 2.6:1 Slurry

Implications of Inactivation

- Safe Sludge Disinfection process inactivated pathogens at a faster rate than control
- After one day the Safe Sludge process > 3 log removal of E. coli and MS2 was achieved

Safe Sludge Toilet Design

- Objective: Incorporate Safe
 Sludge Disinfection Approach
 into toilet
- Design Requirements:
 - Two stage process
 - Detention time for hydrolysis to occur
 - Followed by addition of alkalinizing agent
 - No water, electricity

pHree Loo (Pathogen Free Toilet)

- Designed for family of 5
- Service Delivery model
- Stage 1: hydrolysis of urea; mixing and detention time of ~2 hours
- Stage 2: NH₃ production & inactivation ; transfer of slurry from Stage 1 into a collection bin containing Ca(OH)₂ solution

Field testing of Safe Sludge approach (ongoing)

- □ Start Date: Nov 2, 2012
- Partners: Sanergy in Nairobi, Kenya
- Determine the minimum amount of urine needed to be mixed with feces to create the NH₃ concentrations needed for disinfection
- Retrofit an existing Sanergy toilet to divert a portion of the urine into the feces receptacle to see if we get comparable results

Future Goals

Based on results, develop recommendations for scaling up

Acknowledgments

BILL& MELINDA GATES foundation

- University of California, Berkeley
- Prof Kara Nelson's Research Group
 - Selam Habebo
 - William Tarpeh
- Hyphae Designs Laboratory

THANK YOU

QUESTIONS?

Temitope.Ogunyoku@berkeley.edu & nelson@ce.berkeley.edu