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Brief overview of biological treatment

Solids, inerts Aerobic C &N Recycle of Disinfection
separation removal bacteria and discharge

* A high fraction of WWT u
energy goes to aeration

« $MM in organic chemical
purchase

» Bacteria could produce
unwanted products (N,O)




Biological N-removal
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Biological phosphorous removal
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Mass loading of organics and nutrients
entering 14 NYC WWTDPs

* Flow: 1.2 billion gallons per day
— 1860 tons of organic carbon per day
— 280 tons of N(-III) per day
— 60 tons of P(+V) per day

INew York City| / £
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Possible flowsheet for
C, N and P recovery

Anaerobic Carbon .
conversion * C-I' edUCtlon

* N-no redox cycling

* P- no redox cycling

— How to monetize

Chemical Phosphorus
recovery recovery of energy or
chemical resources with
environmental process
objectives
Biological or Chemical Anaerobic Biological
Nitrogen Recovery Nitrogen Removal



Engineered Resource Recovery from
‘Waste’ Streams







Conversion of fecal sludge into biodiesel
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Faecal Sludge to Biodiesel

Process Schematic

ANAEROBIC

FECAL SLUDGE | FERMENTATION ANAEROBIC

~TorE T DIGESTION /= DIGESTION TREATED
Lo T HRT=4d HRT =4 d EFFLUENT
10,000 kg EFFLUENT
i R -
I i ,
: “  Biogas ¢
:. (CH.)
d ~3?I[: ke
¥
Fatty acids Metrt-. > Bucess CH or CHIOH
1L (CH:OH)
" <740 kg
!
* p F
. b
“a 100 kg
Bmmﬂgénéumm —> 100kg Glycerol (by-product)

1
L J

1000 ke Blodlesel

Storage /Pumplng
Statlan



Piloting 1n Kumasi, Ghana

Google earth
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* Entirely surrounded by FS lagoons and landfill
* Facility completely off-grid

— No municipal watet, or power available on site



Piloting 1n Kumasi, Ghana

. Q=10,000L/d
. HRT =12d

e Feedstock —
fecal sludge

* End products —
methane,
chemicals,
biodiesel




FS2BD Project Map




Brief process calculations

Process design flow 10,000 L./d
Inherent lipid content 50 kg/d
Biodiesel potential 57 L/d biodiesel

Methane produced 45 m>/d, assuming 0.3 m?/ kg COD removed
and 50% COD removed

N-recovered 20 kg/d, assuming 2000 mg NH,/L in FS

P-recovered 2.75 kg/d, assuming 275 mg P/L in FS



Fecal sludge to biodiesel

* Construction complete

* Processing of FS and
conversion
experiments ongoing

* Developing lab and
testing facilities onsite

Biodiesel




Opportunities for increasing
process efficiency



Internally producing lipids

Process design flow 10,000 L./d
Inherent lipid content 50 kg/d
SC-VFA yield expected 60 kg COD/d

Assuming: 20 g COD/L in the influent FS
Assuming: 30% VFA COD/FS COD by

fermentation
Lipids produced 1067 — 6933 g lipids/d
Total lipids 51067 -56933 g/d
Biodiesel potential 58 — 65 L/d biodiesel

* Also vastly opens up the choice of substrate
feedstocks
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Chemical Recovery
Methane to bio-methanol

Nitrite

Ammonia

Water

Methanol

Methane

* Concomitant oxidation of CH, and CO, fixation

* Prospect of combining C &N cycles

WERF Paul Busch Award, 2010 Gﬁ?



Resource recovery 1s not the panacea
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Alternate feedstocks and
endpoints

* Waste cooking oil

— Evaluate biodiesel yield and quality after
multiple use

— Follows direct biodiesel pathway
* Any organic stream, literally

— Follows fermentation pathway

* Bio-butanol possible with high carbohydrate

wastes



Are there other benefits?
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* N,O is produced during both nitrification
and denitrification

— Redox cycling of N

* Poorly designed and operated ww treatment
plants produce and emit higher N,O

Ahn et al.; 2010a,b, Yu et al., 2010, Yu & Chandran, 2010, Lu & Chandran, 2010, Chandran et al., 2011 d?
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Sewage sludge to biodiesel
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Using the fat content of
biosolids

Using MeOH for fuel
production instead of N-
removal

0



! EUPSH Summary of the Clean Wz
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Summary of the Clean Water Act
33 US.C. §1251 et seq. (1972)

The Clean Water Act (CWA) establishes the basic structure for regulating discharges of pollutants into the waters
of the United States and regulating quality standards for surface waters. The basis of the CWA was enacted in
1948 and was called the Federal Water Pollution Control Act, but the Act was significantly reorganized and
expanded in 1972. "Clean Water Act" became the Act's common name with amendments in 1972.

Under the CWA, EPA has implemented pollution control programs such as setting wastewater standards for
industry. We have also set water quality standards for all contaminants in surface waters.

The CWA made it unlawful to discharge any pollutant from a point source into navigable waters, unless a permit
was obtained. EPA's National Pollutant Discharge Elimination System (NPDES) permit program controls
discharges. Point sources are discrete conveyances such as pipes or man-made ditches. Individual homes that
are connected to a municipal system, use a septic system, or do not have a surface discharge do not need an
NPDES permit; however, industrial, municipal, and other facilities must obtain permits if their discharges go
directly to surface waters.

Compliance and Enforcement

e Clean Water Act Compliance Assistance
¢ Clean Water Act Compliance Monitoring: investigations and inspections
e Water Enforcement

7 Contact Us @ Share

e PDF of CWA, from U.S. Senate
(234 pp, 571K, About PDF)

* The official text of the CWA is
available in the United States
Code on FDSys, from the US
Government Printing Office

Find regulatory info:

e By topic
e By sector

Get involved with EPA
regulations

Learn about:

e The Basics of the Regulatory
Process

e Compliance

¢ Enforcement
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Characteristics of fecal sludge

Lipids, Avg. by Source (%)

Phosphorus, Avg. by Source (mg/L)

Nitrogen, Avg. by Source (mg-N/L)
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Wicked Problem, about 70% of the world’s population will live in cities by 2050 Gt?









NO,-N
N(+V)

NOZ--N
N(+11)

Several intermediates reactive
— NO,-N, NO, NH,0H
— Control expression of
pathways

* How to resolve activities?

e How to resolve contribution
to mass balances?

Ahn et al., 2008, Baytshtok et al., 2008, 2009, Park

et al., 2010a,b, Lu et al., 2011a,b, Lu et al, 2012

Engineered BNR systems are typified by multiple activities in

concert or competition
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Fecal Sludge to Biodiesel

Project objectives
1)  Develop a robust and efficient fermentation-based technology for producing biodiesel from FS.
2)  Understand costs and potential revenue streams of fecal sludge-fed biodiesel production.

3) Identify and prepare for structures and procedures needed to successfully implement and operate a full-scale FS-fed

biodiesel plant as a social enterprise in Ghana.
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Figure 3. Acid-catalyzed esterification of fatty acids to FAME and water
(Reproduced from Mondala et al. 2009).

Adapted from CU Proposal Narrative and Appendix II: Sludge-fed Biodiesel Technology Landscape, 2011



Process schematic
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Recovery of Carbon from FS
What our industry already knows and does

Chemicals, methane

FS

| ool N, P -rich stream — removal or recovery

Still some limitations to widespread use of
digester gas for energy
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Dual-Phase Digestion and Fermentation of SS

e Fermentation of PDS
to produce VFA

— Used mainly for
denitrification

— Kinetics higher than
MeOH
* Acid-digestion of
surface froth and scum

— Reduced foaming

PDS fermentation and storage at 26 — VFA recovery
Ward WPCP in New York City, 2002



