

http://clara.boku.ac.at

10

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

CLARA Simplifying Planning Tool Experiences: Case of Arba Minch Town ,Ethiopian

14-17 October 2013 Nairobi, Kenya Atekelt A. Ketema

..

Introduction

٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

- Town population(2012): \approx 94,000
- Area: 84,387 ha
- Elevation: 1200-1320 masl
- Annual average rainfall: 900 mm
- Average temperature: 24[°]c
- Four administrative sub city : Abya, Sikela,Shecha, Nechisar Study area : Abaya & Sikela
 - Population (2012): ≈ 39,000
- 45% of HH monthly income <63\$

Introduction

Water Supply Facts

- Existing source: Spring (30 l/s)
- Traditional disinfection by chlorination
- Average water consumption< 30l/c/d
- Water supply coverage: 56%

Sanitation Facts

- Onsite sanitation chain (Latrine, UDDT, Fossa alterna, Septic tank...)
- No municipal waste treatment plant and proper disposal site
- WSP was practiced by AMU
- Compost production practice at pilot _level

System Planning Approach

• Planning approach:

٥٥

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Step 1: Study area characterization
Step 2: Possible water supply system chain and feasible technology identification
Step 3: Appropriate technical solution selection and plan preparation

60

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

• *Two* domestic user feasible alternatives (technical solutions) are:

Alt 1: Water source from Borehole (67%) and Spring (33%)

Alt 2: Water source from River (67%) and Borehole Spring (33%)

Technologies under alternatives

60

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

• Alternative 1 encompass:

Source : Two boreholes & spring Purification: Disinfection Water distribution: Two pumping stations, transport mains, surface reservoir, Supply networks

• Alternative 2 encompass :

Source : One borehole & River water extraction Purification: Flocculation, Sedimentation, Filtration and Disinfection

Water distribution: Three pumping stations, Transport mains, Surface reservoir, Supply networks

Simplified Planning Tool _WS

Results

SPT Manager

Project Title	Arba Minch water Supply Planning
Period of Consideration [Years]	50
Net Interest Rate [%]	3
Expected Annual Growth [%] Justification/Source:	3.94
Add argumentation here	
Channel in another in an and a second a fault	
Change in cost since release 2013 [%]	1
	Alternative Labels/Names
Alternative #1	Borehole & Spring
Alternative #2	
Alternative #3	Riverwater + Borehole
Alternative #4	

Project Information A1 A2 A3 A4

CLARA SPT Draft Version 1.1.2

CF_Collection solid waste

Ϋ.

General Assumptions

M

				Σ	Total	Final
Alternative	Investment	Σ Reinvestment		Revenue	Costs/Profi	Residual
Name	Costs €	Costs €	Σ O/M Costs €	s€	ts €	Values €
Borehole &						
Spring	1,645,254	6,294,132	11,830,359	0	15,769,123	867,769
River water +						
Borehole	1,703,908	6,525,442	14,015,584	0	18,194,290	840,465

Simplified Planning Tool

Alternatives Cost-Behaviour

SPT_ Electric Power Vrs Generator

	Borehole & Spring full EP supply	Borehole & Spring 2hr/day EP off
Σ Revenues	€0	€0
Σ O/M Costs	€ 11,830,359	€ 14,906,031
Σ Reinvestment Costs	€ 6,294,132	€ 6,559,828
Investment Costs	€ 1,645,254	€ 1,645,254

Alternatives Cost-Behaviour

60

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere and Environment

Thank You