

Assessing the feasibility of faecal sludge cotreatment in a sewage treatment plant

C.M. Hooijmans, **B. Dangol**, C.M. Lopez-Vazquez, M. Ronteltap, D. Brdjanovic

This research is funded by the Bill & Melinda Gates Foundation under the framework of Sanitation for the Urban Poor project (Stimulating Local Innovation on Sanitation for the Urban Poor in Sub-Saharan Africa and South-East Asia).

FSM practice

- Proper planning of FSM often lacks;
- FS disposed of mostly untreated and uncontrolled;
- The major challenges on FSM are:
 - Emptying;
 - Transporting;
 - Storage or treatment;
 - Safe disposal or re-use.
- Sometimes discharging of FS in municipal wastewater treatment plant.

Context

- Option of treating or stabilizing FS by discharging it into a sewage treatment plant;
- The characteristics and amount of FS added can affect the performance, operation and maintenance of the sewage treatment;
- For treatment plants of over 100,000 PE the discharge of septic tank sludge may not create adverse problems in the plant.

Research questions

- Is it possible to co-treat FS in an activated sludge plant?
- How much FS can be added before deterioration occurs?
- What are the effects on aeration capacity, effluent concentration, settler?

Research objective

• To evaluate and propose key considerations for FS co-treatment with municipal wastewater in an activated sludge wastewater treatment plant.

Methodology

- Mathematical modelling of the effects of discharge of FS under steady state and dynamic conditions;
- Requires fractionation of the organics and nitrogenous compounds in terms of their biodegradability (like with wastewater);

• The biodegradability of FS depends to a large extent on the storage duration in containment .

Faecal sludge "definition"

- Sludge from on-site sanitation systems and unsewered public toilets: "fresh FS";
- Sludge from septic tanks : "digested FS"

Inventory of literature data on public toilet (fresh) and septic tank (digested) sludge

Parameter	Public Toilet	Septic Tank
Total solids (mg/L)	30,000-52,500	12,000-35,000
TVS (%TS)	65-68%	50-73%
COD (mg/L)	10,000-250,000	3,000-90,000
BOD ₅ (mg/L)	7,600	840-30,000
TN (mg N/L)	-	190-1,500
TKN (mg/L)	3,400	1,000
NH ₄ -N (mg/L)	2,000-5,000	150-1,200
Total P (mg P/L)	450	40-300

Ca	itegory	High strength		Medium strength		Low strength	
		Total COD	TN	Total COD	TN	Total COD	TN
\setminus		(mg COD/L)	(mg N/L)	(mg COD/L)	(mg N/L)	(mg COD/L)	(mg N/L)
D	igested faecal sludge	90,000	1,500	45,000	400	3,000	200
F	esh faecal sludge	250,000	5,000	65,000	3,400	10,000	2,000

Faecal sludge fractionation

Fraction	CO	D	N				
	Digested FS	Fresh FS	Digested FS	Fresh FS			
Soluble biodegradable /ammonia	0.12	0.15	0.20	0.47			
Soluble unbiodegradable	0.09	0.03	0.75	0.52			
Particulate biodegradable	0.31	0.69	-	-			
Particulate unbiodegradable	0.47	0.13	0.05	0.01			
Biodegradable COD fraction	Digested F	S:					
0.12+0.31 = 0.43							
	Biodeg	ra <mark>d</mark> able C	OD fraction	Fresh FS:			
0.15 + 0.69 = 0.84							

Design and operational conditions of the activated sludge plant

Parameters	Value	Influent (mg/l)	Value
Flowrate (m ³ /d)	20,000	Total COD	750
Temp.	20 ∘C	TN	60
SRT (days)	10	TP	15
Reactor TSS (mg TSS/L)	4500	TSS	400

Amount of faecal sludge added to the plant

Assessment criteria (Key Performance Indicators)

- Effluent Standards (*Urban Waste-Water Treatment Directive (91/271/EEC)*):
 - TCOD = 125 mg/L
 - TN = 15 mg/L
 - TSS = 35 mg/L
- Reactor TSS concentration \leq 6,000 mg/L;
- Aeration capacity and costs.

Results of the faecal sludge modelling

- Steady state simulations;
- Dynamic simulations.

Steady state simulations results Effluent TCOD

15 UNESCO-IHE Institute for Water Education

Steady state simulation results Effluent TN limit = 15 mg/L500 450 High Strength Fresh FS 400 → Medium Strength 350 Fresh FS ³⁰⁰ 250 MI 200 III -Low Strength Fresh FS High Strength **Digested FS** 📥 Medium Strength 150 **Digested FS** 100 **Digested FS** 50 215 0 0% 2% 4% 6% 8% 10% %FS

16 UNESCO-IHE Institute for Water Education

Steady state simulation results: Effluent TSS

Steady state simulation results: TSS in aeration tank

Maximum volume of FS that can be discharged

Scenarios	% FS for effluent standard is met		% FS selected	% FS when TSS in aerobic tank	Volume of sludge (m ³)	# Tanker loads/d	
	Total	Total N		is < 6kg TSS/L		5 m ³	8 m ³
	COD						
Digested Sludge							
Low Strength	10%	3.75%	3.75%	3.75%	750	150	94
Medium Strength	1%	1.5%	1%	0.375%	75	15	9
High Strength	0.5%	0.625%	0.5%	0.25%	50	10	6
Fresh Sludge							
Low Strength	10%	0.375%	0.375%	0.375%	75	15	9
Medium Strength	1.5%	0.25%	0.25%	0.25%	50	10	6
High Strength	0.375%	0.125%	0.125%	0.125%	25	5	3

Increase in aeration cost

		Total aeration cost		Additional aeration cost			
		(€/year)@€0.10/kWH		(€/year)			
		High Aer.	Low Aer.				
		Efficiency	Efficiency	High Aer.	Low Aer.		
Scenarios	FS (%)	(2.3)	(0.6)	Efficiency	Efficiency		
Without FS	0%	118,968	456,046	-	-		
Digested Sludge							
Low Strength	3.75%	123,721	474,266	4,753 (4%)	18,220 (4%)		
Medium Strength	0.375%	130,094	498,697	11,126 <mark>(</mark> 9.5%)	42,651 <mark>(</mark> 9.5%)		
High Strength	0.25%	134,550	515,812	15,591 (13%)	59,766 (13%)		
Fresh Sludge	Fresh Sludge						
Low Strength	0.375%	126,062	483,237	7,093 (6%)	27,192 (6%)		
Medium Strength	0.25%	137,332	526,440	18,364 (15.5%)	70,394 (15.5%)		
High Strength	0.125%	149,178	571,852	30,210 (25.5%)	115,806 (25.5%)		

Dynamic simulation results

• Average discharge of faecal sludge = $127.5 \text{ m}^3/\text{d} (0.68\%)$

Effluent COD and N high-strength digested FS

Effluent COD and N low-strength digested FS

Effluent COD and N low-strength fresh FS

24 UNESCO-IHE Institute for Water Education Attempts to improve effluent quality

- Discharge of FS during the night;
- Combined discharge of FS and influent wastewater in flow equalization tank;
- Discharge of even lower volumes of FS in the plant.

Conclusion:

max. volume of FS that can be discharged

Type of faecal sludge	Max. volume		No. of tanker loads per day				
	% m³/d		5 m ³	8 m ³			
Digested faecal sludge							
Low-strength	0.638	128	26	16			
Medium-strength	0.500	100	20	13			
High-strength	0.250	51	10	6			
Fresh faecal sludge							
Low-strength	0.125	25	5	3			
Medium-strength	0.025	5	1	1			
High-strength	0.025	5	1	1			

General conclusion

- High increase in effluent COD, N and TSS conc. (low-strength FS has lower impacts);
- Increase in aeration requirement;
- Increase in TSS in aeration tank;
- No significant improvement in effluent quality when discharged FS during the night and by adding flowequalization tank;
- No feasible approach.

Considerations

- Pathogens removal;
- Resource recovery;
- Energy consumption.

Thanks for your attention!

