The grey and black water separation as solution for water scarcity and sanitation in MSBs in Arba Minch, Ethiopia

IWA-DCE Oct,14 – 17, 2013 in Nairobi, Kenya

Presenting: Teshale Dalecha Fontosse

The main author: Firas Feki

N. Weissenbacher

S. Sayadi

Arba Minch team

G. Langergraber

Content

- ☐ Study Area background
- □ Objective
- ☐ Method
- ☐ Alternative Sanitation solutions
- □Summery & conclusion
- Acknowledgement

Study Area

- Increasing population number, increasing demand for housing
- More than 5'000 inhabitants out of 100'000 in Arba Minch are currently living in multi storey buildings.
- Hence, such condominium houses are playing an important role in the settling development of the city.

- The water supply scheme in place can hardly cope with the water demand under normal conditions in these MSBs.
- In the frame of CLARA project (http://clara.boku.ac.at/); measures to reduce water consumption at the MSBs and resources-oriented solutions have been researched.
- The development and implementation of solutions for MSB and O & M of the existing facilities shall have highest priority to reduce health risks for the increasing population

Objective

To study the grey and black water separation as solution for water scarcity and sanitation in MSBs

Methods

• Interview and field observation.

Secondary data

• NPV analysis to check the costs of the alternatives

Water Supply, Sanitation & Space Assessment

- Average water consumption 50 L/C/d.
- Waste generation rate (0.8 0.9)% of water consumption
- Grey water is assumed to be 70 % of the wastewater & 30 % is black water

Waste water	45L/C/day	5.8 m3/day
Grey water	32 L/C/day	4.2 m3/day
Black water	13 L/C/day	1.6 m3/day

- The grey water treated by wetland is intended to be used as auxiliary to the municipal water supply to satisfy the requirements of toilet flushing and outdoor space irrigation.
- The water demand for toilet flushing is about 10 L/c/d and 2 L/c/d is used for anal and urine cleansing.
- The total flushing water demands for the building per day and per year are given as about 1.3 m³ and 475 m³, respectively.
- The GWT system could cover the total of the water flushing toilet demand

7,clara 🕰

Option - A

Option - B

Manual – cheaper option

- The total capital investment for the 2 options installation is about 17 468 and 13 863 Euro respectively. Thus, the installation cost per households is approximately 672 and 533 Euro
- This amount is relatively high compared to the medium standards of leaving in Arba Minch.
- More than 62% of the town inhabitants' monthly income is less than 70 Euro (CLARA Arba Minch Team, 2013).
- Option B is manual due to this it is low cost. However, this option is promoting the contact with the treated grey water.
- The benefit using grey water for flushing toilet and outdoor space irrigation should be well investigated for study area in future.

- The separation of grey water, treatment and reuse seems to be attractive from a resources orientated solution point of view.
- Implementation of flushing toilets with TGW involved could cover 100% of water flushing toilet demand. The use of potable water for non-potable-water needs inside the selected pilot could be reduced by 1.3 m³/day.

- The investment and operating cost of both options (A and B) is relatively high.
- However, emphasis should be given that the ultimate usage of the recovered water can reduce water scarcity in MSBs and for improving health
- Resource-oriented water use in MSBs should be promoted & supported by public investment.
- the Integrated water use concept should be included from the beginning of the planning of new MSB structures; to adapted technological solutions finally an appropriate local operation and maintenance scheme should be set.

Thank you for your attention!

Acknowledgements

EU 7th frame work program BOKU University, Vienna, Austria CLARA team