

Performance of a DEWATS Plant Treating Domestic Wastewater: A South African Case Study

Sudhir Pillay*, Nicolas Reynaud**, Bjoern Pietruschka***, Kitty Foxon* and Chris Buckley*

* Pollution Research Group, University of KwaZulu-Natal, Durban, South Africa
 **Technical University Dresden, Urban Water Management, Germany
 *** International Institute Zittau (IHI Zittau), Technical University Dresden, Germany

UNIVERSITY OF KWAZULU-NATAL

Country level

1994: democracy and new constitution

- access to potable water constitutional right
- sanitation policy and minimum standards •
- backlog 12 million water; 19 million sanitation •
- funding available for poor and indigent

City boundaries expanded since 2000

- area +68% to 2 297 km²
- population +9% to 2.7 million
 - 63 000 rural households require water and sanitation
 - urban informal settlements
 - large inward migration

Water and sanitation servitudes provided by eThekwini Municipality

Ethekwini Water and Sanitation (EWS) unit

Results

DEWATS: Application in South Africa

- Communities preferring waterborne sanitation
- High-density communities not connected to sewered network
 - Peri-urban areas serviced by CABs
 - Low cost housing not suitable for septic tanks or dry sanitation
 - Hilly terrain
 - Semi-pressurised roof tanks
 - Water available for flushing
 - Space limited for evapotranspiration areas

Conclusion

Background Objective The Plant Method Results

Research Questions

- How tolerant is DEWATS treatment to external factors?
- What can we learn about the general relationship between loading and treatment of DEWATS?

- Built according to BORDA design spreadsheet (Sasse, 1998)
- Designed to treat domestic wastewater from 86 households (41 m³/ d domestic wastewater)
- Construction cost covered by eThekwini Water Services
- Reactor seeded in October 2010 and operated under varying conditions

Results

Conclusion

Background Objective The Plant Method

Two Operations

- Research Phase 1
 - Feb to May 2012
 - Overloaded train
 - Design flow x 3
- Research Phase 2
 - June to October 2012
 - Trains operated at approx. design flow

Results

Research Phase 1 All flow diverted through one train

Investigated treatment influencing factors

The Plant Method

Design Details

 Module arrangement

Background

Loading vs
 Design

Feed Characteristics

 Exposure to stormwater

Objective

General properties

Design Details

Conclusion

• 0&M

Results

- Desludging
- Descumming

Background Objective The Plant Method Results Conclusion

Q1: How tolerant is DEWATS treatment to external factors?

- Rain water intrusion influenced effluent concentration
 - Rainfall days removed from analysis (false positive results)
- Worldwide, all SSS plants and some CSC showed signs of stormwater intrusion

Reynaud et al. (2013)

Background Objective The Plant Method Results Conclusion

Q2: What can we learn about the general relationship between loading and treatment of DEWATS?

Research Phase 1: Loading Conditions

	Average Daily Flow	Percentage of Design Flow	Average HRT of ABR	Average HRT of AF
	m³/d	%	d	d
Design (3 trains)	41.6	100	1.5	0.6
Design (1 train)	13.9	100	1.6	0.6
Research Phase I				
Train 1	37.8	ca. 273	0.6	0.2

Results

Research Phase 1: Performance

 The pH value low but not inhibitory → indicates hydrolysis is occurring through plant (pH influent value around 8.0)

- The settler and ABR module steps combined only remove 30% of the influent total COD
- The AF modules could only slightly increase the total COD removal to around 50%.
- Better total COD removal efficiencies have been reported in ABRs operated at similar or lower HRTs

Research Phase 1: Design vs Actual

Background Objective The Plant Method

Results Conclusion

Research Phase 1: Wetland Performance

Research Phase 2: Loading Conditions

	Average Daily Flow	Percentage of Design Flow	Average HRT of ABR	Average HRT of AF	
	m³/d	%	d	d	
Design (3 trains)	41.6	100	1.5	0.6	
Design (1 train)	13.9	100	1.6	0.6	
Research Phase I					
Train 1	37.8	273	0.6	0.2	
Research Phase II		\frown			
Train 1	21.2	153	1.0	0.4	
Train 2	9.5	68	2.3	0.9	
Train 3	10.2	73	2.2	0.9	
Percentage of Design Flow	700% 600% 400% 300% 200% 100% 0% Cl-/kW-II	× Train 1 • 70-70-70-70-70-70-70-70-70-70-70-70-70-7	Train 2 • Train	3	

Research Phase 2: Performance

Street 1 CODt - Street 2 CODt - Street 3 CODt - Design

Research Phase 2: Performance

Train 2									
Operational Details: ABR = HRT 2.3 d, AF = HRT 0.9 d									
Parameter	unit	Influent	Settler 2a	Settler 2b	ABR 7 th Chamber	AF 2 nd Chamber	HFCW		
рН		8.34	na	7.63	7.34	7.58	8.04		
Total COD	mg/l	873	672	732	444	347	190		
Soluble COD	mg/l	469	442	460	305	263			
NH ₄ -N	mg/l	39	64	64	61	63	40		
PO ₄ -P	mg/l	6	8	9	8	7	6		

What does the Results tell us?

- No difference in performance between overloaded (200% design) vs underloaded systems (70% design)
- The total COD removals for the plant and for individual treatment modules are much less than those reported elsewhere and at similar loadings.
- The ABRs are not as effective as shown in previous studies →
 The results indicate that the digestion process is not efficient.
- Most BORDA DEWATS plants in Indonesia and India have lower effluent concentrations - 200 to 300 mg COD/L - using <u>only</u> anaerobic steps.
- NH4-N still above discharge guideline.

Possible reasons for performance

 Combination of low sludge activity and extreme hydraulic conditions → need an overflow

Background Objective The Plant Method Results Conclusion

Operation & Maintenance

- Plant performance similar across all loadings tested but was generally unfavourable in comparison to other work.
- The ABR did not perform as expected with the AF modules removing the majority of COD through solids retention.
- It was hypothesized that the unfavourable performance was due to unstable operating conditions linked to stormwater intrusions and a biomass with low methanogenic activity.
- Need to incorporate technology upstream to limit trash dumping such as pour flush being tested by PiD & UKZN

Background

d 🛛 Objective 🛛

The Plant

Method

Results

Conclusion

Rainwater harvesting to limit stormwater intrusion – used as resource for flushing, gardening Photo: <u>www.wrc.org.za</u>

Toilet design uses low flushes and limits trash dumping in bowel

Acknowledgements

- South African Water Research Commission Project K5/2002
- Dr. Valerie Naidoo (WRC) and Steering Committee members
- BORDA
 - Mr. Andreas Schmidt (BORA)
 - Mr. Stefen Reuter (BORDA)
 - Mr. Phatang Sananikone (BORDA)
- Ethekwini Municipaility:
 - Mr. Bill Pfaff (EWS)
 - Mr. Rob Dyer (EWS)
 - Mr. Laurence Davies (EWS)
 - Mr. Teddy Gounden (EWS)
 - Mr. Lauwrence Maduramuthu (Ethekwini Agriculture)

