Highly Efficient Microbe-mediated Energy Harvesting from Wastewater through Nanomaterial Decorated Three-dimensional Porous Matrix Electrode

> International Faecal Sludge Management Conference October 30, 2012, Durban, South Africa

Arum Han^{*}, Celal Erbay^{*}, Yeontack Ryu^{**}, Choongho Yu^{**},

Mi-Jin Choi^{*}, Paul de Figueiredo^{***}

* NanoBio Systems Lab., Dept. Electrical and Computer Engineering & Biomedical Engineering, Texas A&M University ** Department of Mechanical Engineering, Texas A&M University *** Department of Plant Pathology and Microbiology, Texas A&M University

Microbe Power

Microbes Sweet on Making Power

Alternative energy is already a big business. Power plants that turn wastes into electric power... But in the long run, the real potential is replacing biomass-burning with bugs: It really simplifies the prospectus of using waste streams and biomass as fuel. ----- Vol. 301, September 2003, Science

The Electric Microbe

...But we should be thankful for one **especially talented microbe**, Geobacter, which has tiny hairlike extensions called pili that it uses **to generate electricity from mud and wastewater**.----*The 50 Best Inventions of 2009, Nov. 2009, Time*

Top 10 New Water Technologies to Save the World

Aquaporins, ...**Microbial fuel cells,** Vapor transfer irrigation, Phospho rus recovery ...Decentralized wastewater treatment-----*Vol. 10, Global Water Intelligence, July 2009*

Bioelectrochemical System (BES)

What is a **Bioelectrochemical System?**

: an electrochemical system in which <u>biocatalysts (such as microbes)</u> perform oxidation and/or reduction at electrodes

Microbial Fuel Cell

Microbial Fuel Cell (MFC): A BES that produces <u>net electrical power</u> utilizing various organic substrates through <u>direct electron transfer</u> from microbes to electrodes

*PEM: Proton exchange membrane

Anode: Organic oxidation $HAc \rightarrow CO_2 + H^+ + e^-$ Cathode: Oxygen reduction $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$

MFCs:

Use bacteria as the catalysts to oxidize substrate and produce electrons
Electrons produced by the bacteria are directly transferred to the anode and flow to the cathode, producing electricity

Mechanism of Electron Transfer by Microbes

Not fully understood, but...

1. Direct electron transfer from microbes attached to electrodes

2. Highly conductive nanowires produced by specific microbes

3. Exogenous mediators or microbial-origin mediator

Few known electricity-producing microbes: Shewanella, Geobacter

MFC Configurations: Lab-Scale

Lab-Scale MFCs

Two-Chamber MFC

Single-Chamber MFC

Min et al., 2005 Liu et al, 2004

Miniature Microbial Fuel Cells

Microfluidic MFC The Gardner Lab in Boston University, USA

MFC Array (Our Lab)

MFC Configurations: Pilot-Scale

MFC Performances for Electricity Generation

PEM fuel cell 6000W/m²

MFC in Wastewater Management Process

Energy Self-sufficient Wastewater Treatment Process with MFC

Microbial Electrolysis Cell (MEC)

Microbial Electrolysis Cell (MEC): A BES where minimal electrical power is provided to achieve hydrogen or chemical production

Why Hydrogen?

Hydrogen Production Costs

Cost comparison for the different H₂ **production technologies**

Process	Sources	Production scale	Production costs	
		(10 ⁶ Nm ³ /day)	(\$/Kg)	
Steam reforming	Natural gas	0.27~25.4	0.65~1.35	
Coal gasification	Coal	2.30~6.78	1.18~1.39	
Biomass gasification	Biomass	0.72~2.26	1.04~1.57	
Biomass pyrolysis	Biomass	0.024~0.31	1.06~1.53	
Electrolysis (general)	Water	0.1~6.75	2.47~3.44	
Electrolysis (photovoltaic)	Water	0.195	5.02	
Electrolysis (wind power)	Water	0.247	2.42	

Water electrolysis vs. Microbial Electrolysis Cell

Technology	Technology Energy efficiency (%)		Cost (\$/kg-H ₂)	Remarks
Water Electrolysis ^a	56	5.6	3.4	USDOE target cost
MEC ^b	350	0.9	0.62*	for H_2 (\$2~3/kg H_2) ^c

^a lvy (2004) Summary of Electrolytic Hydrogen Production: Milestone Completion Report/^b Call et al. (2009) Environ. Sci. Technol./^c DOE. Hydrogen, fuel cells & infrastructure technologies program. Multi-year research, development, and demonstration plan (2007)/* single-chamber MEC at 0.4 V 12 NanoBio Systems Lab. Texas A&M University

Why MEC based H₂ Production?

- H₂ can be biologically produced from bacterial fermentation
- Maximum 12 mol-H₂/mol-hexose
- However only 4 mol/mol (2 mol/mol in practice)
 => How to recover the remaining 8 to 10 mol/mol?

Biohydrogen from Hexose (dark fermentation)

<i>Theoretical</i> 12 mol H ₂ /mol Hexose	$C_6H_{12}O_6$ + $6H_2O$ → $12H_2$ + $6CO_2$	
<i>Practical</i> 2-3 mol H ₂ /mol Hexose	$C_6H_{12}O_6 + 2H_2O \rightarrow 4H_2 + 2CO_2 + 2CH_3COOH$	
	$C_6H_{12}O_6 \rightarrow 2H_2 + 2CO_2 + CH_3CH_2CH_2COOH$	

- US DOE estimation for viable process: 10-12 mol H₂/mol Hexose
- DOE cost goal: reduce \$6 to \$2/kg H₂

So, we need new technology

MEC Performances for H₂ Production

Still require external power to reach maximum H₂ production, however much lower than that needed for direct water electrolysis

Our Vision: MFC-MEC Coupled Hybrid System

for self-sustainable simultaneous wastewater treatment and electricity/biohydrogen generation <u>Goal for our BMGF Grand Challenge Exploration Grant (Round 7)</u>

Challenges in BESs

Cost Analysis of MFCs and MECs

Components	Materials	Power (mW/m²)	Cost (\$/m ²)	Reference/ Remark
	Carbon Paper	600	0.01	Logan et al. (2007) Environ. Sci. Technol.
	Carbon Cloth	46 W/m³	0.56-1.63	Zhang et al. (2009) Environ. Sci. Technol.
	Carbon mesh	893	1.67-5	Wang et al (2009) Environ. Sci. Technol.
Anode	Carbon Brush	2400 0.57		Logan et al. (2007) Environ. Sci. Technol.
	Carbon Felt	356 W/m ³	4.55-4.88	Aelterman et al. (2008) Bioresour. Technol.
	Granular Activated Carbon	5 W/m³	0.01 \$/kg	Jiang and Li (2009) Water Sci. Technol.
	Stainless steel Plate	23	0.09-0.63	Dumas et al. (2007) Electrochim. Acta
Ion Exchange Membrane	Cation/Anion Exchange Membrane	-	111.11	Membranes International Inc. CMI-7000S (1.2 m X 3.0 m) AMI-7001S (1.2 m X 3.0 m)
Cathode Catalysts	Pt	766	138.57 \$/g	Cheng et al. (2006) Electrochem. Commun.
	Сотмрр	286	49.90 \$/g	Zuo et al. (2008) Environ. Sci. Technol.
	MnO ₂	86 Wei et al. (2011)	10.88 \$/g	Zhuang et al.(2009) Biosens. Bioelectron.

Out Strategy

Maximizing reactions & electricity generation by using multi-dimensional macro/nano-scale electrodes

Overcoming Bottlenecks of BESs

- **1.** Potential losses at anode compartment
- 2. Charge and ion transports in electrolyte
- 3. Membrane resistance, selectivity and O₂ permeability
- 4. Structure of the anode
- 5. Role of the cathode performance
- 6. Scaling up problems

Biofuels for Fuel Cells (2005) IWA Publishing

- Catalysts on the electrode decreasing the activation losses
- Increasing the roughness and specific surface area of the electrode
- Decreasing the activation losses at the bacteria
 - Free flow of influent and effluent through the electrode matrix
 - Adequate surface for growth of a biofilm, which will perform most of the electron transfer
 - Sufficient support and conductive surface
 - Sufficient turbulence for adequate proton diffusion towards the membrane and the cathode

Problem (need): Lots of testing needed at every step of MFC and MEC development

1. Develop a high-throughput screening BES system that will allow parallel analysis of many different microbes, operating conditions, anode materials, cathode materials, etc.

2. Utilize this screening system for rapid development of low-cost high-efficient anode materials and non-platinum catalyst cathode materials

Microbial Fuel Cell (MFC) Array

A Single H-type MFC

Multiple H-type MFCs or miniature MFCs

http://www.mfc-conference.kr/

http://geobacter.org/wiki/ pmwiki.php/LabMembers/ HannoRichter

Microfabricated MFC array

A high throughput screening/analysis device for parallel studies of electricigens in MFC applications!

24-Well Microbial Fuel Cell Array (MFCA)

DESIGN

- Anodes (1): 24 individually addressable Ti/Au electrodes patterned on a glass substrate
- Anode & cathode chambers (2&4): 24 miniaturized PDMS chambers (600 µl)
- Proton exchange membrane (PEM) (3)
- Cathodes (5): 24 individually addressable Pt loaded carbon electrodes

FEATURES

- 24 integrated independent miniature MFCs
- Power output monitored from each MFC in parallel
- Less reagents consumption (380 times smaller)
- Low well to well variations (< 8% std)
- Highly repeatible
- Reusable and easy to assemble

NanoBio Systems Lab. Texas A&M University

Application 1: Environmental Microbe Screening

Environmental sample from water and soil

Brazos River, TX

Brazos River, TX

Lake Somerville, TX

Prescreening of electrogenic microbes

- Use Reaction Black 5, an azo dye that indicates electrochemically active organisms
- ✤ 26 hits

Application 1: Environmental Microbe Screening

- **13** environmental samples (n = 2)
- **Control**: S. oneidensis MR-1(SO)
- 7Ca vs. S. oneidensis MR-1 (SO): 1 mW/m² vs. 0.43 mW/m², 233% higher
- => Select 7Ca strain

Environmental Microbe Screening

- * 7Ca and SO with more repeats (n = 8)
- * 7Ca showed 266% higher than the SO

Environmental Microbe Screening

Maximum power density:
 7Ca showed 233% higher SO (MFC array: 266%)

=>Findings in our MFC array system can be translated to larger scale conventional systems

Environmental Microbe Screening

H. Hou et al., *PLoS ONE*, 2009 H. Hou et al., Biosensors & Bioelectronics, 2011

96-Well Microfluidic MFC Array (MMFCA)

FEATURES

- Same design concept as the 24-well microfluidic MFCA
- Higher throughput (24 => 96)
- Can accommodate multi-channel pipettors
- Both fully anaerobic and aerobic environment can be tested

Microfluidic Microbial Fuel Cell Array

Microfluidic MFC array with individual control of anode & cathode chambers for high-throughput and long-term MFC experiments

В

• With catholyte replenishment, power generation of *Shewanella oneidensis* MR-1 increased by 3.6-fold, with lifetime increased by 7-fold. (batch-mode anode)

• Environmental soil sample screening for highelectiricity producing electricigens using the microfluidic MFC array.

NanoBio Systems Lab. Texas A&M University

Α

3D Multi-Length Scale Porous Matrix Electrodes

• Excellent Connections between Microbes and Electrodes

- Three-dimensional porous structures → Large surface to volume ratios for improved macro-scale microbe-electrode interactions
- <u>Nanomaterial-synthesized electrodes</u> → Improved electron transfer route from microbes to electrodes, both in terms of higher conductivity and more conduits for electron transfer with extremely high surface area

Method: Directly synthesize MWCNTs on low-cost macroporous stainless steel (SS) mesh electrodes. Advantages of both 3D structures and nanomaterial-decorated ele ctrodes, at the same time being low cost

30

Nanomaterial-Based Anodes

References	Anode Materia	al/ Structure	Power Density (mW/m²)	Improvement	MFC configuration	
Xie et al. (2012)	CNT on Sponge	(b)	2130 mA/m ²	A7 0/	H-shaped MFC	
	Sponge		1440 mA/m ²	47 /0	(150 mL)	
Mink et al. (2012)	MWCNTs with a nickel silicide	(b) <u>50µm</u>	19.6	390 %	Microsized MFCs (125 μL)	
	Gold ^a		4			
Sharma et al. (2008)	MWCNTs		2470	763 %	Dual-chambered MFC (250 mL)	
	Graphite	6 µт	286	100 /0		
Qiao et al. (2008)	CNT/PANI on Nickel foam		42	1515%		
	Woven graphite ^b		2.6	131376		
Xie et al (2011)	CNT on textile fibers	E Carbon nanotube layer	1098	68 %	H-shaped MFC (200 mL)	
	carbon cloth	<u>2 μm</u>	655	00 /0		

^a Siu et al. (2008) J. Microelectromech. S./^b Part et al. (2003) Biotechnol.Bioeng

Carbon Nanotubes on Stainless Steel Mesh

• Why Carbon Nanotubes (CNT)?

Excellent electrical conductivity: ~10⁴ S/cm at 300 K (metal-like conductivity)
 Extremely large surface area: Sites for various reactions

Our hypothesis is that directly synthesizing MWCNTs on low-cost macroporous SS mesh can establish a tighter linkage with the underlying electrodes and produce higher power due to enhanced microbe-electrode coupling

Systematically study what physical properties of CNT-based electrodes contribute to higher MFC power generation

Carbon Nanotubes Attached on Carbon Brush

- ✓ Bare Carbon Brush: 60 mW/m²
- ✓ Improvement: 128%

Improved electricity production, but not sufficient

CNTs Directly Synthesized on Stainless Steel Mesh

• MWCNTs grown on SS Mesh by Chemical Vapor Deposition

Synthesis Conditions: C₂H₄ and H₂ with moisture (800 °C, 30min)

Sample Name	Length	Diameter	Distribution
CNT-SSM1	~15 µm	~200 nm	Random
CNT-SSM2	~20 μm	~50 nm	Aligned
CNT-SSM3	~20 μm	~200 nm	Random

CNT-SSM1

CNT-SSM2

CNT-SSM3

NanoBio Systems Lab. Texas A&M University

Power Generation of 3D vs 2D Electrodes

Bare SS Mesh (3D) vs Bare Carbon Cloth (2D)

Using pure culture (Shewanella Oneidensis MR-1)

Power Generation with CNT on SS mesh

Power Density Comparison with Different CNTs on SS Mesh

Using pure culture (Shewanella Oneidensis MR-1)

Sample Name	Length (µm)	Diameter (nm)	Distribution	Power (mW/m ²)
CNT-SSM1	~15	~200	Random	261.4
CNT-SSM2	~20	~50	Aligned	124.9
CNT-SSM3	~20	~200	Random	545.8

CNTs grown directly on SSM (CNT-SSM3) **shows 2725 times and 82 time higher** power generation than bare SS mesh and bare carbon cloth

Biofilm Growth on CNT Anode Electrodes

Before MFC Run

Bare Carbon Cloth

Bare SS Mesh

Bare CNT on SS Mesh

• After MFC Run

Bare Carbon Cloth

Bare SS Mesh

CNT on SS Mesh

NanoBio Systems Lab. Texas A&M University

What to Expect when using Wastewater

• Mixed microbial culture from wastewater typically results in significantly higher power output

Culture/ Innoculum	Power Density (mW/m ²)	Coulombic efficiency (%)	Current Density (mA/m ²)	Anode Materials	Cathode Materials	References
Shewanella oneidensis	9.3	56.2	50	Solid graphite	Graphite	Lanthier et al. (2007)
Geobacter sulfurreducens	13.1	95	65.4	Solid graphite	Solid graphite	Bond and Lovley (2003)
Pseudomonas aeroginosa	1.67	-	130	Solid graphite	Solid graphite	Rabaey et al. (2005)
Anaerobic digestor Sludge	170	0.7-8.1	516	Carbon fiber	Carbon fiber	He et al. (2005)
Wastewater	766	32	1050	Carbon cloth	Carbon cloth	Min and Logan (2004)
Anaerobic & aerobic digestor sludge	280 W/m ³	29	-	Graphite granules	Graphite granules	Aelterman et al. (2006)

Conclusion

- Unique microfluidic system approach allowed highthroughput screening of various microbes and anode materials
- Carbon nanotubes (CNTs) directly grown on SS mesh electrodes significantly improve the power density compared to bare SS mesh electrodes (2725 times) and carbon cloth electrodes (82 times)
- Modest cost increase for MWCNT synthesis process in cathode (in current lab scale < \$10/m²) results in high power output

Future Works (for next 6 - 9 months)

- Currently at TRL 3 4
- Further systematic analysis of physical properties of CNTs influencing MFC power output
- Apply the system using wastewater
- Apply the unique CNT-based anode for MEC hydrogen production
- Non-platinum catalyst cathodes based on nanomaterialelectrodes are being developed and tested

Future Works

Where do we see this technology in developing world?

□ the Biogas Support Programm (BSP)

- ✓ the Government of Nepal & SNV with financial support from the Netherlands Ministry of Foreign Affairs (DGIS)
 ✓ In 1989: started in Nepal
- ✓ In 2010: 330,000 household in Asia (nearly 2 million people)

http://www.grida.no

NanoBio Systems Lab. Texas A&M University

Future of MEC

Lab scale MEC

Pilot scale MEC

Acknowledgements

NanoBio Systems Lab. Members

Dr. Jaewon Park Dr. Mi-Jin Choi Dr. Sungman Kim Dr. Changwoo Ban Hyunsoo Kim Chiwan Koo Han Wang Celal Erbay

Adrian Guzman

Prof. Younghak Cho (now Ass. Prof. at Seoul Nat'l Uni. of Tech.

Dr. Huijie Hou (now Post.Doc. at Penn State)

Collaborators

Prof. Jianrong Li (TAMU, Vet. Medicine)
Prof. Timothy Devarenne (TAMU, Biophy/Biochem)
Prof. Paul de Figueiredo (TAMU, Microbiology)
Prof. Paul de Figueiredo (TAMU, Microbiology)
Prof. Won-Bo Shim (TAMU, Plant Pathology)
Prof. Arul Jayaraman (TAMU, Chem. Eng.)
Prof. Steve Wright (TAMU, Electrical Eng.)
Prof. Mary McDougall (TAMU, Biomedical Eng.)
Prof. Melissa Grunlan (TAMU, Biomedical Eng.)
Prof. Choongho Yu (TAMU, Mechanical Eng.)
Prof. Dong Hee Son (TAMU, Chemistry)
Prof. Dong Shin (Emory Uni. Medical School)
Prof. Georgia Chen (Emory Uni.) Medical School
Prof. Bruno Frazier (Georgia Tech, Electrical Eng.)
Prof. David Storp (PTL Cornell University)

Sponsors for the NanoBio Systems Lab. Prof. David Stern (BTI, Cornell University)

