

Carbon Neutral Electrical Generation from Human Solid Waste Developing the Energy Balance and Identifying

Suitable Electrical Generation Solutions Capable of Harnessing the Thermal Energy

Ben Hallowell, MPH

Jessica Peterson, Jeff Hallowell

Outline

- Our First Pyrolysis Unit
- The Energy Balance
- Electrical Generation Solutions
- Next Generation Units
- Lessons Learned
- Next Steps

The First Unit

THE GOAL

- Off-grid pyrolysis unit
- Economically viable
- Treat faecal sludge from 500-10,000 individuals
- No harmful pollutants, no safety hazards
- Carbon neutral or negative

Pyrolysis

- Thermal decomposition of biomass in an environment with a negligible or limited supply of oxygen.
- Removes pathogens and organic toxins.¹
- Allows for significant mass reduction (88-95%).
- Provides a net energy output.²
- Creates an end usable byproduct, biochar.

India Fair 2014

- Treat faecal sludge from 2,000 individuals
- 85% moisture
- Limited use of supplemental fuel

Energy Balance Assumption

FAECAL SLUDGE

Moisture Content 85%

Energy Content 17.2 MJ/kg

Biochar Output 25.8 MJ/kg

BIOGENIC SUPPLEMENTAL FUELEnergy Content16.9 MJ/kgMoisture Content5%

Energy Demand

THEORETICAL ENERGY DEMAND

Start-up	3.5 kWe/hr
Steady-state	18 kWe/hr
Shutdown	0.5 kWe/hr

- Most electrical components were oversized
- Observational data 3.8 kWe/hr

100% Efficiency, 0% Supplemental Fuel

75% Efficiency, 0% Supplemental Fuel

9

75% Efficiency, 15% Supplemental Fuel

Identifying Technology Options

GOAL: IDENTIFY A THERMAL ENGINE THAT COULD GENERATE 3-5 KWE/HR

- Most thermal generators produce >1 MW/hr.
- January-March 2016
 - Commercially available
 - Harness waste heat
 - Produce <1MW/hr

 Thermoacoustic, Thermoelectric, Stirling, Steam, and Organic Rankine Cycle

Thermoacoustic Engines

- No moving parts
- No annual maintenance
- High life expectancies
- Capable of generating 1-5 kWe
- Three identified manufacturers
- No products commercially available

BIOMASS

Thermoelectric Generators

- No moving parts or maintenance
- Destroyed when overheated (400-450°C)
- Output: 5-100W
- Three manufacturers identified
- Electrical Efficiency: 0.5-5%
- Price per watt: 7.25-26.00 USD
- Cannot generate sufficient power

13

Stirling Engines

- High efficiency
- 11 manufacturers identified
- Output: 0.60-25 kWe
- Price per watt: 7-30 USD
- No products commercially available capable of harnessing waste heat

Steam Engines

- Powered with any heat source
- 11 manufacturers,
 16 products
- Output: 1.5-18.6 kWe
- 10-20% efficiency
- Price per watt: 1-6 USD
- Multiple products identified

Organic Rankine Cycle

- Capture low temperature heat
- Long life expectancies
- Eight manufacturers
- 9-17% efficiency
- Less corrosion and mechanical stress
- Output: 2-800 kWe
- Price per watt: 4-8 USD
- Multiple products identified

Thermal Power Generation Summary

Organic Rankine Cycle	Viable option
Steam	Viable option
Stirling	Not commercially available
Thermoelectric	Limited generation potential
Thermoacoustic	Not commercially available

Improving the Energy Balance

- Improved combustion efficiency (95%)
- Decreased electrical needs
- Data, Data, Data

Thermal Power Generation Conclusion

- Eliminate Dryer
- Grinder for pre-processing supplemental fuel
- Smaller Footprint

Biogenic Processor

Lessons Learned

- Important to have variable controls
- The "one energy balance fits all" will not work

カカカカカ

Container Tr 78°F Controls	emperatures 68°F Ambient	Kivalina System RUN 01:40:45		200 Watts Power Usage		
1150°F Pyrolysis Temperature 990°F Catalyst Temperature					Prime	
		Prim	26 Primary Air		20 Char Aug	20 Char Auger
212°F Stack Temp	érature	Flash C		Data transfer		
1800 Dxygen Content		Restart	Shird	owr Op	Open-disor	

0'0

Next Steps

Energy, enthalpy, mass, and mass carbon balance

Product Integration

Exploring hybrid power options

WE WOULD LIKE TO THANK OUR FUNDERS

- Bill & Melinda Gates Foundation
- The Kivalina City and Tribal Councils
- NANA (a Regional Native Corporation)
- Teck Resources Limited

Contact Biomass Controls

Thank you for your time! Ben Hallowell Ben@biomasscontrols.com +1 860.928.0712

www.biomasscontrols.com

BIOMASS CONTROLS

Work Cited

- 1. Laird, D. A., Brown, R. C., Amonette, J. E., & Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and biochar. *Biofuels, Bioproducts and Biorefining, 3*(5), 547-562.
- 2. Liu, Xuan, et al. "Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process." *Waste Management* 34.9 (2014): 1619-1626.

