

Pilot Experiments with Electrodialysis and Ozonation for the Production of a Fertilizer from Urine

Wouter Pronk, <u>Steffen Zuleeg</u>, Judit Lienert, Beate Escher, Martin Koller, Alfred Berner, Gerhard Koch, Markus Boller

Eawag: Swiss Federal Institute of Aquatic Science and Technology

Why urine separation and treatment?

Introduction

Materials and Methods

Results

Summary

Ca. 80 % of N and 50 % of P in WWTP influent come from urine as well as pharmaceuticals and hormones

- Nutrient recovery instead of removal
- Closure of nutrient cycle
- Load relieving of WWTP's
- Decreased pollution of surface water
 - Elimination of micropollutants
 - Removal of N, P, etc.

What is needed for urine separation and treatment? (CH)

Introduction

Materials and Methods

Results

- Separation and collection technologies
- Public acceptance of these systems
- Appropriate technologies to:
 - recover nutrients
 - eliminate micropollutants, such as pharmaceuticals and hormones (precaution principle)
 - remove hygienic risks
- Registration of the product as a fertilizer

Introduction

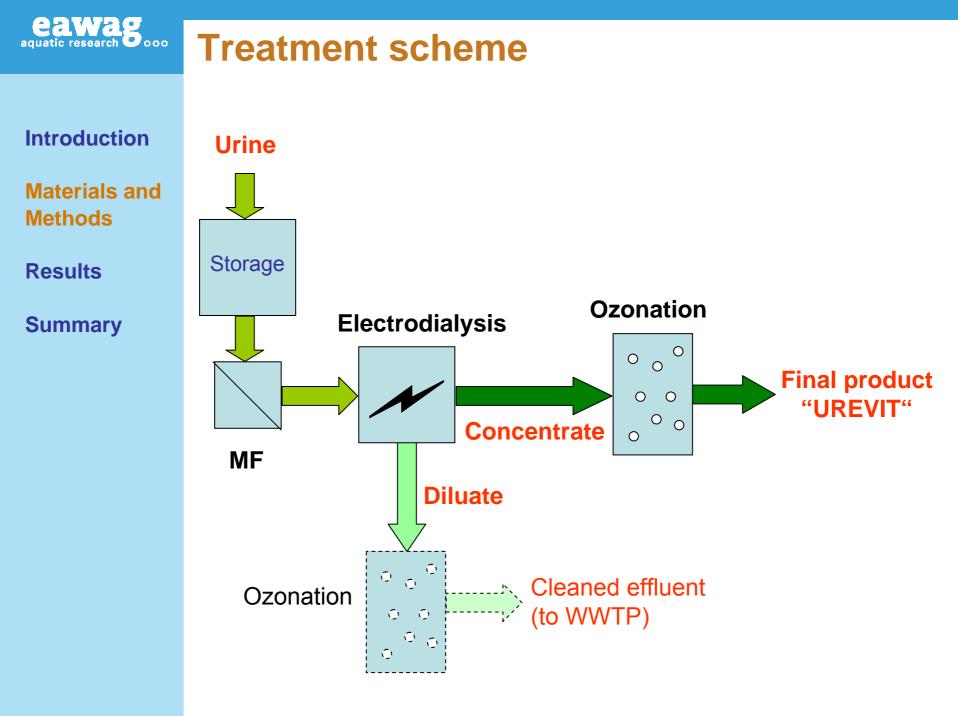
Materials and Methods

Results

Parameters of the collected urine

Introduction

Materials and Methods


Results

Summary

- Weekly amount of collected urine approx. 90 litres
- Storage time approx. 4-5 months
- High turbidity
- Completely hydrolyzed (contains no urea)
- Content:

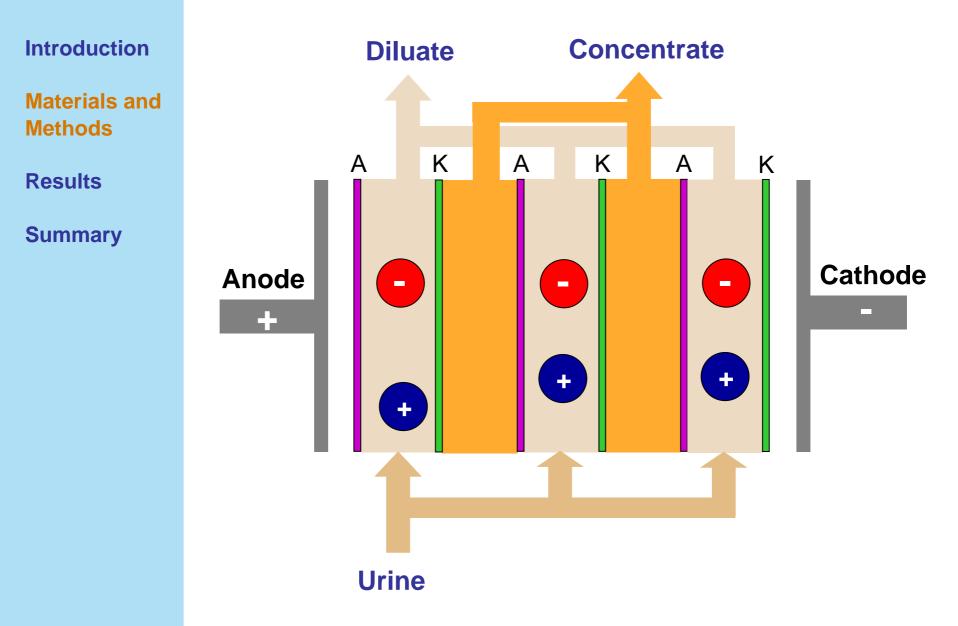
NH ₄ -N	PO ₄ -P	K+	pН	Alkalinity
2.9 g/L	0.18 g/L	1.4 g/L	8.7	220 mM
Na⁺	Cl-	SO42-	COD	DOC
1.6 g/L	3.0 g/L	0.7 g/L	3.6 g/L	1.5 g/L

 Partially diluted, possibly due to actuation of the valve of the urine pipe during flushing the toilet

Introduction

Materials and Methods

Results


Summary

Pilot plant - Installation

Electrodialysis

Electrodialysis – Continuous experiments

Introduction

Materials and Methods

Results

Summary

Flow rate Feed	CF	Product loss	Cond Conc	Cond Diluate	Flow rate Conc	Flow rate Diluate
40 L/day	2.8	7.0 %	77 mS	2.9 mS	0.55 L/h	1.15 L/h
60 L/day	3.5	13.8 %	92 mS	3.5 mS	0.50 L/h	2.02 L/h

Nutrient concentration in the product depending on feed flow rate

- NH₄-N: 9.2 11.8 g/L
- PO₄-P: 0.5 0.8 g/L
- K: 4.5 7.7 g/L

Stable operation during experimental periods

Due to standstill periods some membrane fouling occurred

Ozonation

Introduction

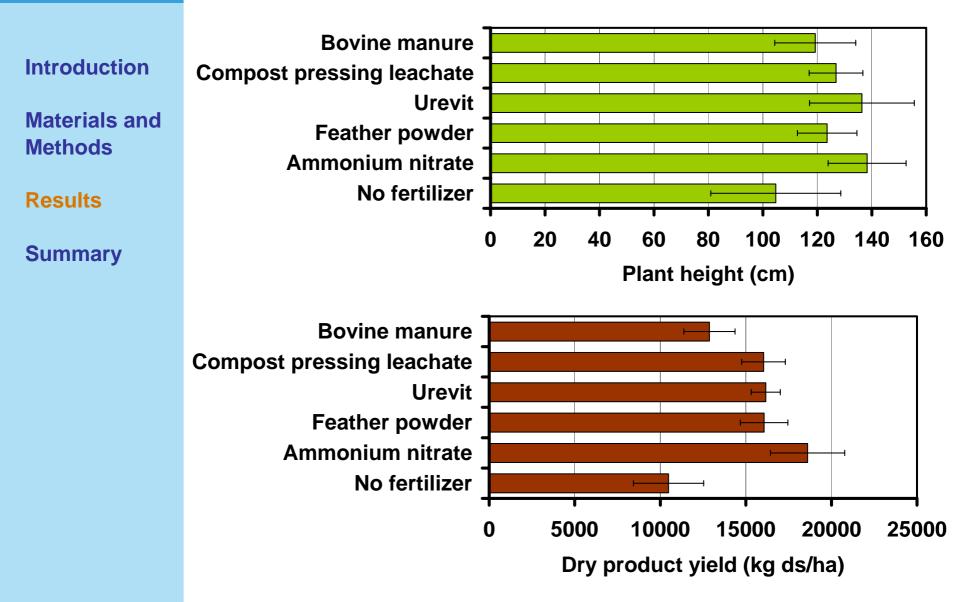
Materials and Methods

Results

- Required ozone dose (lab experiments):
 - Concentrate: 2 2.5 g O₃/L
 - Diluate: 1.4 1.6 g O₃/L
- Foam formation
 - Feed turbidity ↔ bacterial growth
 - Related to EPS formation
 - Foam control strategy:
 - Batch operation: Filtration (MF)
 - Continuous operation: Low residence times after ED

Registration of Urevit as a commercial fertilizer

Introduction


Materials and Methods

Results

- Strict regulations for new fertilizers in CH
- Large range of tests required
 - Micropollutants
 - Heavy metals
 - Hygienic factors
 - Field crop growth test

Field crop growth test

Removal of micropollutants

Introduction

Materials and Methods

Results

Summary

Analysis of single compounds

- Propranolol, Carbamazepine, Diclofenac, Ibuprofen, Ethinylestradiol as representative pharmaceuticals
- All compounds below detection limit in product
- E.g.: Ibuprofen removal:
 - detection limit = < 2 μ g/L
 - influent concentration ca. 200 μ g/L
 - > 99 % removal

Removal of micropollutants

Introduction

Materials and Methods

Results

Summary

Non-specific toxicity

- Bioluminiscence inhibition test
- Decrease during ozonation

Estrogenicity

Yeast Estrogenic Screening method (YES-test)

- Removal in ED: ca. 90 %
- After ozonation: Estrogenic activity in product below detection limit of < 2 ng/L (influent concentration ca. 600 ng/L)

Summary

Introduction

- Materials and Methods
- Results Summary

- Stable operation of ED + O₃ during more than one year
- Membrane fouling was limited
- Microbial growth in ED product caused foaming problems during ozonation
- ED: a concentration factor of 3.5 can be achieved with a product loss of ca. 14 % at a feed flow rate of 60 L/d
- Micropollutants are effectively eliminated (below detection limit)
- Obtained product "Urevit" is an effective fertilizer
- Requirements for the registration have been fulfilled

