

Marketing Human Excreta

A study of possible ways to dispose of urine and faeces from slum settlements in Kampala, Uganda

by Enno Schröder

on behalf of the German Technical Cooperation (GTZ)

schroeder.enno@gmail.com; enno.schroeder@gtz.de

Structure

- Introduction
- Methods
- System Designs
- Conclusion

Introduction

Objectives

- Develop an option for improved slum sanitation
- Using Urine Diversion Dehydration Toilets (UDDTs)
- Study area: Kampala, Uganda

UDDTs in urban areas – general issue

- Need for fertiliser in the city is low.
- How to remove the separated excreta from the city?
- → Logistics system connecting slums with farmers outside the city
- → Economically self sustaining system through marketing of sanitised, separated excreta as fertiliser

Methods

Methodological mix

- 1. Expert interviews
- 2. Interviews with potential participants of a logistics system
- 3. Field data collection
- 4. Observation
- 5. Logistics system design
- 6. Cost calculation (EXCEL model)

Stakeholder selection

According to the interview statements, the stakeholders have been selected

No line" = potential participant = not a potential participant (when it comes to urine) ----- = potential participant (only solid fertiliser)

Logistics system designs

- Two logistics systems have been designed:
 - System A: only urine
 - System B: urine and faeces

System A - Urine

System A: Cost calculation – Assumptions

- Income for the system: urine sales = 0.01 EUR/I (Replacement Cost Approach)
- Project lifetime: 5 years (period, everything is depreciated in)
- System working to capacity: 10,000 I units
- Collection efficiency: 30%
- Average volume of urine in Uganda: 1 I/day
- Company operating 10 hours per day, 30 days per month
- Fuel price: 0.71 EUR/I
- Incentive level per jerrycan: 0.04 EUR/I
- Upfront investments included in the calculation (20% interest rate):
 - Collection point tanks
 - Tank trucks
 - Storage tanks
 - Office building
- Hidden costs: 5%

(For more details please see the underlying study)

System A: Cost calculation – Results

	Small scale I	Small scale II	Large scale I
N demand [kg/month]	1,200	1,808	11,663
Urine equivalent [l/month]	398,182	599,927	3,869,995
# Of people producing it	44,242	66,659	429,999
Workload indicator (Bad workload = 0; Good workload = 1)	0.664	1.000	0.992
Monthly income from urine fertiliser sales [EUR]	4,267	6,429	41,472
Monthly costs [EUR]	5,353	5,730	32,473
Monthly balance [EUR]	-1,086	699	9,000
Monthly return on sales [%]	n/a	11	22
Start-up investment [EUR]	128,465	128,465	732,775
Repayment period [yrs]	n/a	15	7

- Small scale I: All input parameters are based on a flower farm where one interview took place. In this case the system was not working to full capacity.

- Small scale II: Equal to "Small scale I", but working to full capacity.

- Large scale I: Calculations have been made for a system covering all people living in slum settlements in Kampala.

Summary: System A

- The higher the N demand → the bigger the system → the higher the return on sales and the shorter the repayment period (modularity)
- The "small scale I scenario" is not viable
- Major cost constituents are ("small sc. II" and "large sc. I"):
 - "Urine varying transport costs fuel" (35% and 40%)
 - 2. "Urine fix transport costs monthly truck depreciation" (25% and 24%)
 - "Costs of incentives for the jerrycans per month" (20% and 22%)

Summary: System A – sensitivity

- "Sensitivity" \rightarrow change in monthly return on sales
- Most sensitive to ("small sc. II" and "large sc. I"):
 - 1. Reduced transport dist. (+120% and +91%)
 - 2. Extended project lifetime (+81% and +34%)
 - 3. Increased fuel price (-72% and -36%)
 - 4. Rising truck prices (-50% and -21%)
 - 5. Increased incentives (-40% and -20%)
 - 6. Supply chain failure (-19% and -10%)

System B – Urine and faeces

System B: Cost calculation – Assumptions

- General framework: same as for system A
- Additional income from faeces fertiliser bags sales
- Collection efficiency of faeces: 50%
- Urea costs: 0.46 EUR/kg (4% are added per weight unit)
- Incentive per container: 0.04 EUR
- Upfront investments that were included in the calculation (20% interest rate):
 - "PooBoxes" for exchange at the collection points
 - Lorries
 - Drying bed

(For more details please see the underlying study)

System B: Cost calculation – Results

	Small scale I	Small scale II	Large scale I
N demand [kg/month]	1,200	1,808	11,663
Urine equivalent [l/month]	398,182	599,927	3,869,995
# Of people producing it	44,242	66,659	429,999
Amount of faeces [kg/month]	92,909	139,983	902,999
Workload indicator urine (Bad workload = 0; Good workload = 1)	0.664	1.000	0.992
Workload indicator faeces (Bad workload = 0; Good workload = 1)	0.310	0.467	0.752
Monthly income from urine fertiliser sales [EUR]	4,267	6,429	41,472
Monthly income from the "Faecifert" sales [EUR]	2,860	4,309	27,794
Total monthly income [EUR]	7,127	10,738	69,267
Monthly costs [EUR]	8,587	10,076	56,917
Monthly balance [EUR]	-1,460	662	12,349
Monthly return on sales [%]	n/a	6	18
Start-up investment [EUR]	160.022	163,376	843,427
Repayment period [yrs]	n/a	21	6

- Small scale I: All input parameters are based on a flower farm where one interview took place. In this case the system was not working to full capacity.

- Small scale II: Equal to "Small scale I", but working to full capacity.

- Large scale I: Calculations have been made for a system covering all people living in slum settlements in Kampala.

Summary: System B – overview and cost constituents

- The higher the N demand → the bigger the system → the higher the return on sales and the shorter the repayment period (modularity)
- The small scale I scenario is not viable
- Major cost constituents are ("small sc. II" and "large sc. I"):
 - 1. "Monthly urea costs" (27% and 31%)
 - 2. "Urine varying transport costs fuel" (20% and 23%)
 - 3. "Urine fix transport costs monthly truck depreciation" (14% and 14%)
 - 4. "Costs of incentives for jerrycans per month" (11% and 13%)

Summary: System B – sensitivity

- "Sensitivity" \rightarrow change in monthly return on sales
- Most sensitive to:
 - 1. Reduced transport dist. (+127% and 66%)
 - 2. Extended project lifetime (+127% and +31%)
 - 3. Rising nutrient prices (-103% and -34%)
 - 4. Increased fuel price (-83% and -28%)
 - 5. Rising truck prices (-70% and -18%)
 - 6. Increased incentives (-52% and -18%)
 - 7. Supply chain failure (-20% and 7%)

Conclusion

Theoretically feasible, but... Technology/Design issues

- Narrow choice of consumers
 - Large proportion of small scale farmers, fertile soils, handling of liquid fertiliser is considered to be problematic
- Bad road conditions, high rate of road accidents
 - High risk of supply chain failure (manageable?)
- Marketing a solid fertiliser:
 - No special means of transportation
 - No distribution
 - No vulnerable supply chain
 - No special storage requirements
 - \rightarrow Feasibility would have to be tested on the ground

Conclusion

....Economic issues

- Low fertilising value to weight ratio of human excreta
 - Higher transport costs
 - Higher handling costs

Alternative fertiliser needs to be competitive in terms of

- Nutrient content and plant availability
- Managing effort
- Product price
- System has to work to full capacity

...Acceptance and general issues

- High socio-cultural barriers (all stakeholders)
 Can possibly be changed by »Incentives
 »Sensitisation
 »Economical competitiveness
- \rightarrow Positive outcome \rightarrow profitability proven!
- →Is the business profitable enough to attract investors (considering the risks)?
- →Kick-off funding might be inevitable

Acknowledgements

- Dr. Elisabeth von Münch, Steffen Blume and Dr. Martina Winker (GTZ Sustainable sanitation - ecosan)
- Karsten Gjefle representing Sustainable Sanitation Design (SuSan Design)
- Fred Nuwagaba (Reform of the Urban Water & Sanitation Sector Programme (RUWASS) in Kampala)
- Dr. Christoph Zipfel, Jan Michael Mock and Anna Kristina Mayr (German Development Service (DED) Country Office Uganda in Kampala)
- Dr. Charles Niwagaba (Makerere University, Kampala and Director of Sustainable Sanitation and Water Renewable Systems (SSWARS))

Appendix

Nachhaltige Sanitärversorgung ecosan

Stakeholders and the two level approach to the interviews

Slum sanitation – different sanitation modes

- About 60%* use shared pit latrines, provided by the landlord
- About 30%* use public toilets; User fee: approx.
 0.04 EUR
- About 10%* rely on "other means": flying toilets or open defecation

*)Estimated numbers, based on expert interviews

System A: Cost constituents

System B: Cost constituents

Cost Constituent Comparison of the Urine and Faeces Logistic Scenarios

Typical pit latrine

Photo by Steffen Blume (2009)

Alternative means...

Photo by Enno Schröder (2009)

Flower farmers

Fertiliser/irrigation water _ mixing station.

Fertigation in greenhouse

Photos by Enno Schröder (2009)

Situation analysis