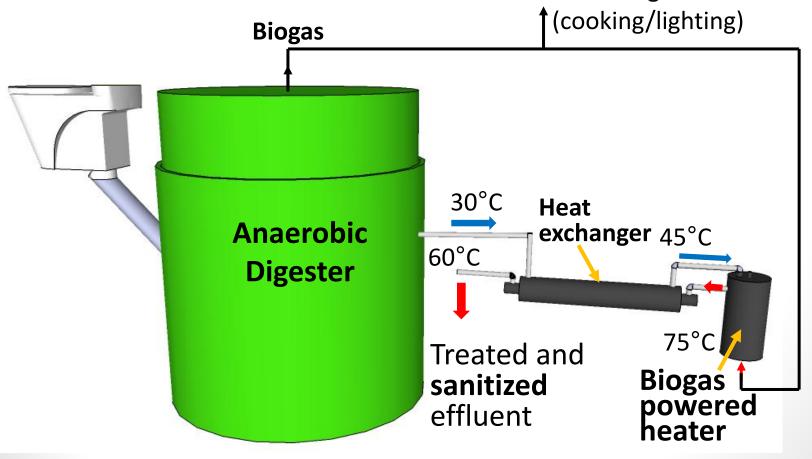
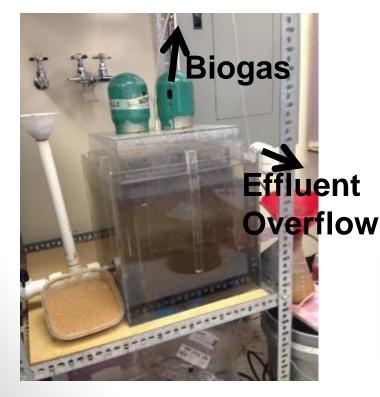
Anaerobic Digestion-Pasteurization Latrine (ADPL): Sanitation in Multiple Contexts

Aaron A. Forbis-Stokes¹, Lilya Ouksel¹, Patrick O'Meara², Gelas M. Simiyu³, Marc A. Deshusses¹ ¹Dept. of Civil and Environmental Engineering Duke University, Durham, North Carolina, USA ²Wataalamu Repair & Mechanics, Eldoret, Kenya ³Dept. of Environmental Biology and Health, Univ. of Eldoret




The ADPL: A Self-Sanitizing Toilet

Our objective is to develop a **self-contained** and **energy neutral** sanitation technology that relies on anaerobic digestion to generate biogas then used to **heat-sterilize** the treated effluent. Extra biogas

Anaerobic Digestion Results (Lab)

Load	OLR (kg _{cop} /(m³d)	N in (g/L _{influent})	Yield (m³ _{biogas} /kg _{COD})	CH ₄ (%)	COD Removal (%)	NH ₃ - N out (g/L)	рН
Lower N	1.78	5.20	0.42	63.0	71.1	3.80	7.6
High N	1.80	7.20	0.33	64.5	61.9	4.98	8.1

Lab system: scaled-down 1/3 person

17 L vol. HRT 40 days T= 30 °C No mixing

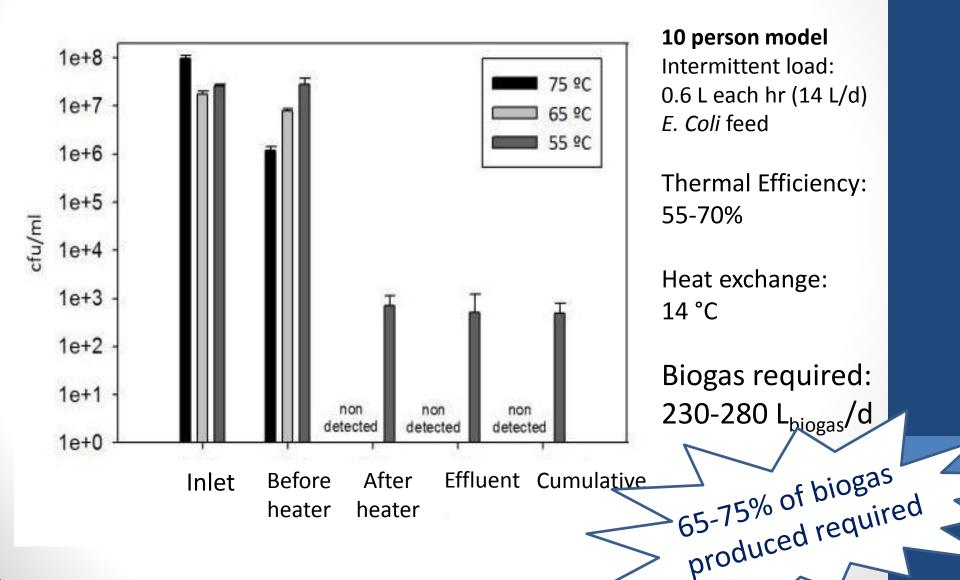
Daily feed: 300 mL urine/d 120 g feces/d Intermittent feed

Per person biogas yield 42 L_{biogas}/(p d) at lower N 33 L_{biogas}/(p d) at high N

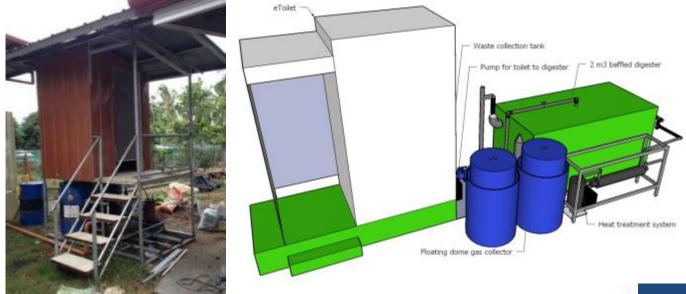
The Effluent is NOT Clean Water But it is Safe!

Field systems

Lab unit (fed simulant)


Pasteurization System Heat sterilization system -kills pathogens From digester Treated Biogas-powered effluent heater **Heat-exchanger Biogas-powered** heater Entire system is gravity fed

Pasteurization Systems Made Locally In Eldoret



Pasteurization Results (Lab)

Field Studies

3 systems each with 3 toilets, ~80 users total

1 system, 1 toilet, 10 users

With ERAM's eToilet, IITM campus 30-60 users

Kenya

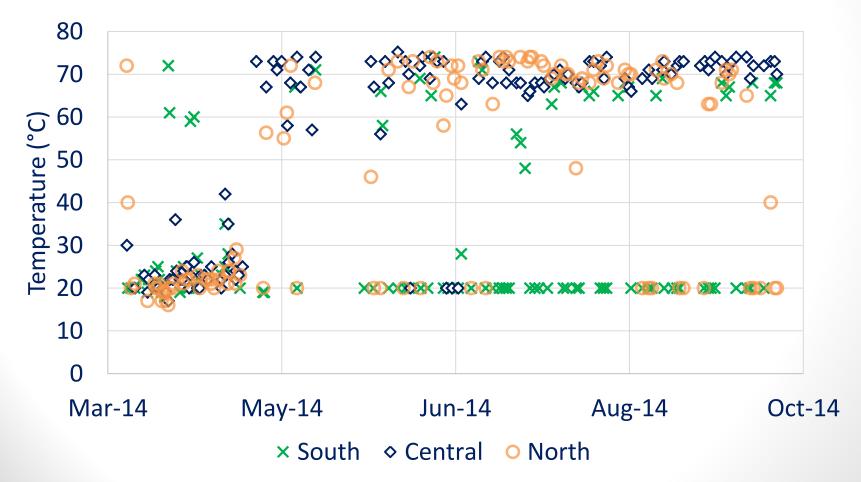
2013

Philippines India

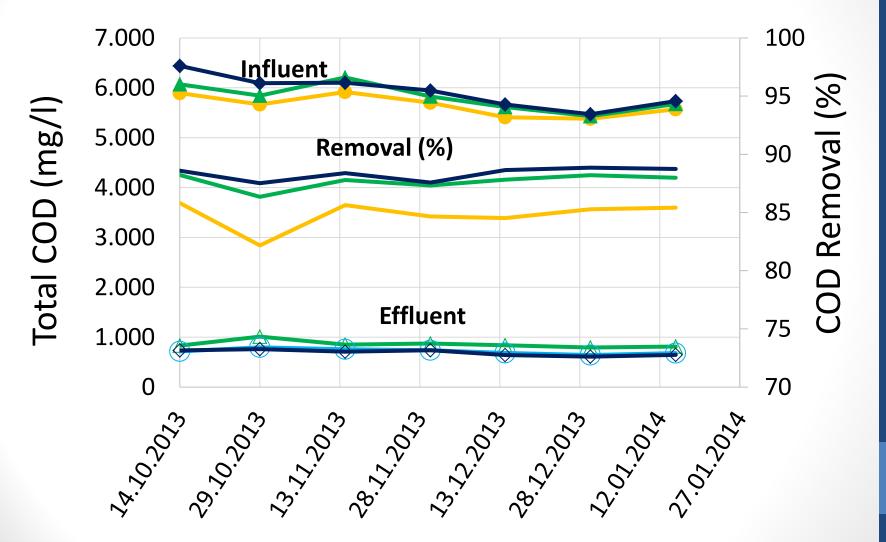
2014

Eldoret, Kenya – 2013 - Present

- 3 sites (17, 35, 24 residents)
- Squat-style latrines, wipers, 1 L pour flush
- Fully enclosed treatment system, 3x3 meter footprint
- SimGas 2m³ floating dome digester
- Locally fabricated heating system
 - 16 g galvanized steel
 - 7.7 L heating tank
 - 9.4 L heat exchanger
- All gravity flow, no moving or externally powered parts



Kenya – Operation


- Seeded with AD sludge from dairy farm
- Gradual acclimation period with manure and urea
- Semi-autonomous daily checks for burner operation, clogs, and leaks
- User advantages Less odor & flies, well-lit, resources
- User disadvantages Height inconvenience, no solid waste disposal, pour flush
- Regular usage at Central results in consistent operation and rarely requires adjustments
- Irregular usage at South yields inconsistent gas production

Kenya – Results

- Avg. biogas production: 325 L/d (South), 791 L/d (Central), 453 L/d (North)
- Cost: \$1500 (\$800 digester, \$200 heat system, \$500 toilet structure)

Kenya – Results

South Central North

Philippines - June 2014

• Toledo City, Cebu Island

- Tesari Foundation Project lead
 - We provide only technical advising
- Part of comprehensive sanitation campaign
- Rural community (barangay) without improved sanitation

Philippines – System

- Prototype for sanitation campaign
- Pour-flush (4 L) pedestal toilet
- Fully enclosed treatment system, 2x1.5 meter footprint
- 250 L drum digester with separate floating dome gas collector (100 L)
- Locally fabricated heating system
 - 10.8 L heating tank
 - 12 L heat exchanger
- All gravity flow, no moving or externally powered parts

Biogas

collector

Biogas-powered heat steriliz

Digester

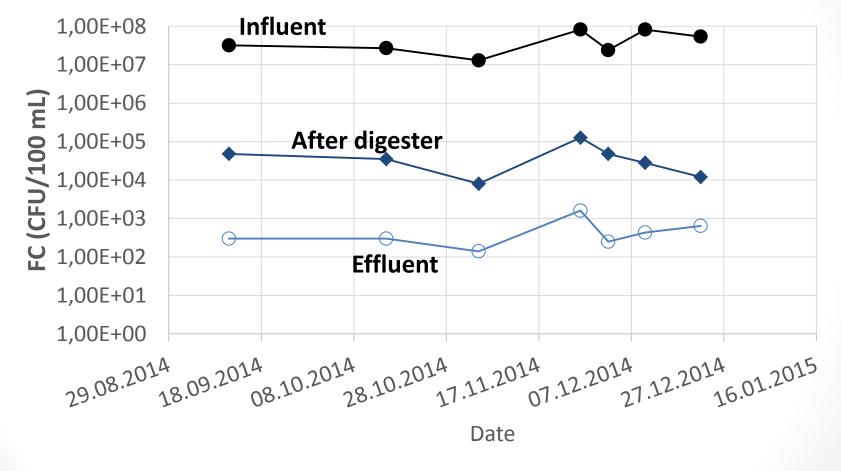
Philippines – Operation & Results

- Seeded with septic tank sludge
- Users: 2-7 users per day
- Average biogas production: 18 L/d
- Heating operation: 3-4 hr/d
- pH: 7.9
- Cost: total \$837 (\$455 for treatment only)
- Usage rate too low to produce sufficient biogas
 - Only foundation employees have access
- Digester will be supplemented with swine manure

India – July 2014: ADPL v2

- With Eram Scientific eToilet, construction & maintenance
- IIT-Madras operation & monitoring
- IIT-Madras Campus, Chennai, India (Prof. L. Philip)
 - Women's dormitory

India – System


- Feed via 12 VDC macerator pump (same power supply as eToilet)
- ALFA 2m³ baffled anaerobic digester
- 150 L floating dome gas collectors (2x)
- US-made heating system
 - Stainless steel 304
 - 10.8 L heating tank
 - 12 L heat exchanger
- Arduino controlled automation for pump and heating operation

India – Operation & Results

- Seeded with AD sludge from municipal WWTP
- Gradual acclimation with campus sewage
- Usage: 50-75 p/d
 - Unexpected barriers to usage by residents
- Average COD removal: 87.5%
- Average TSS removal: 95.4%
- pH: 6.9
- Cost: \$4,100*
 - *Heating system came from previous project in the US, accounted for \$1,500
 - Controls system: \$120

India – Operation & Results Pathogen Control

← Influent ← After ABR ← Effluent

Conclusions & Future Work

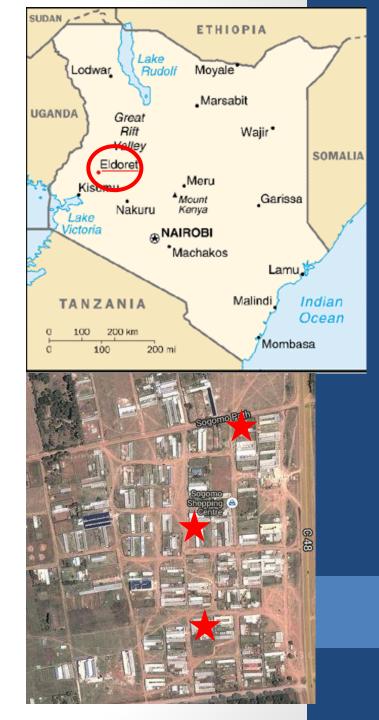
- The ADPL works, it is a simple and economical system
- With proper usage, ADPLs can run autonomously, consistently maintaining temperatures between 65-75 °C and producing more biogas than required
- The concept is scalable and replicable
- We are learning from ADPL deployment in 3 countries

Current and future focus:

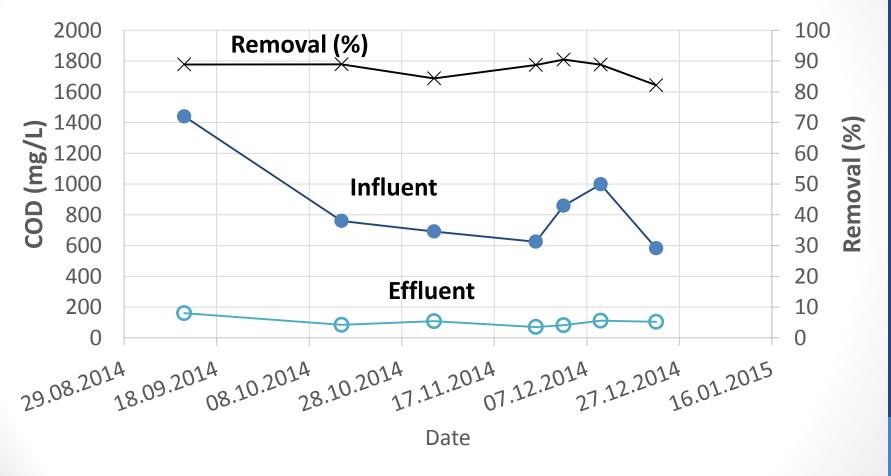
- Optimize biogas production and effluent quality
- Optimized design
- Demonstration at greater scale
- Explore sanitation as a business, partnerships with sanitation service organizations

Backup slides/images

System Cost Kenya

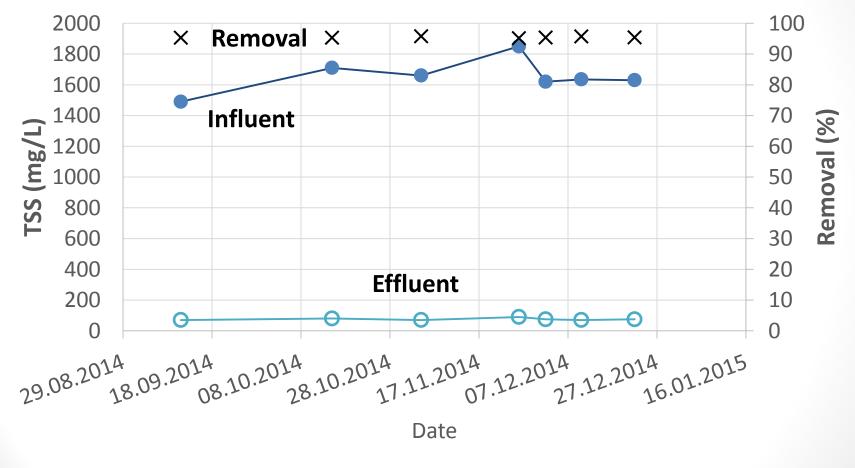

Description	Quantity	Total Cost	Cost/System
Gesi2000 Biodigester	3	\$2421*	\$807
Digester connections	3	\$283	\$94
Heating system	3	\$289	\$97
Latrine	3	\$1474	\$491
Total		\$4632	\$1544†

+With a conservative estimate of 5 year lifespan and average of 25 users per system, system cost = **\$0.03/p/d**


*Gesi2000 Biodigester was donated by SimGas.

Kenya (June 2013)

- University of Eldoret Operation & Monitoring
- Wataalamu Repair & Mechanics Construction & Maintenance
- Sogomo Estate, Eldoret, Kenya
 - Plots are 1/8 acre, municipal water tap, borehole well, shared pit latrines
- 3 sites (17, 35, 24 residents)
- Squat-style latrines, wipers



India – Operation & Results

←Influent ←Effluent ★ Removal

India – Operation & Results

→Influent → Effluent × Removal

Toilet & Digester

- Prefabricated plastic latrine labs
 - 2 sites with standard slabs
 - 1 site with urine diversion
- SimGas Gesi2000 floating dome digester
- <1L pour flush

Heating system

- Fabricated in local labor market
 - 16 gage galvanized steel and welded seams
- Heating tank Left
 - 7.7 L
- Heat exchanger Right
 - 9.4 L

Complete System

- Acclimated seed sludge and gradual loading
- In use plots with 17, 24, and 35 residents
- Fully enclosed treatment system, 3x3 meter footprint
- User advantages Less odor & flies, well-lit, resources
- Disadvantages Height inconvenience, solid waste, pour flush

Philippines – with Tesari Foundation

Location on Cebu Island

Current "toilet" used

India – with ERAM and IIT Madras

eToilet

ADPL treatment system