

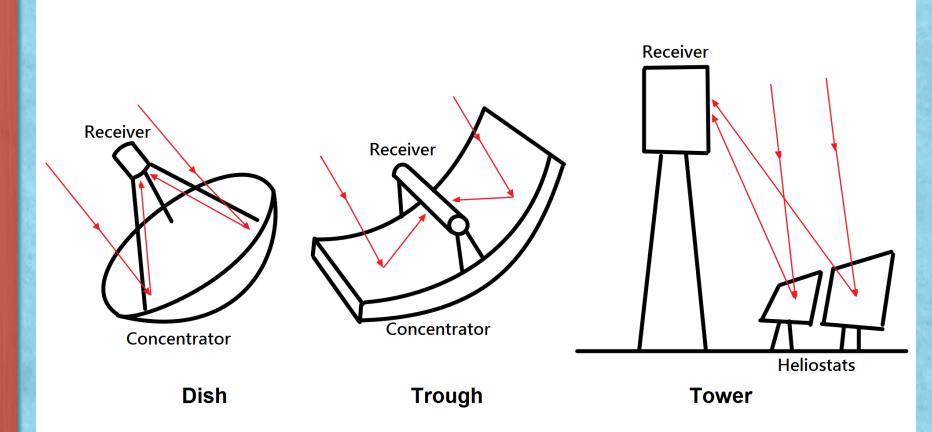
Applications of Concentrated Solar-Energy in Innovative Sanitation Solutions

Karl Linden, Professor, University of Colorado USA Hanoi, Vietnam January 19-22, 2015

karl.linden@colorado.edu

Overview: Sol-Char Sanitation Team

- SolChar: Al Weimer, R. Scott Summers, Al Lewandowski, Rita Klees, Richard Fisher, Tesfayohanes Yacob, Ryan Mahoney, Barbara Ward, Cori Oversby
- BrightSpace: Joseph DiMasi, Kevin Keilbach, Lauren Hafford, James Barry



BILL& MELINDA GATES foundation

Types of Concentrated Solar Energy

 Three primary methods for concentrating and transmitting solar energy

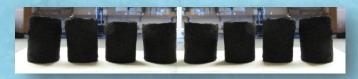
Sol-Char Concept Overview

The Sol-Char toilet uses concentrated solar power to transform human waste into valuable end products

Phase I Reinvent The Toilet Challenge

Parabolic dishes concentrate solar energy

Fiber optics transmit energy to a pyrolysis reactor


Reactor thermally inactivates human waste

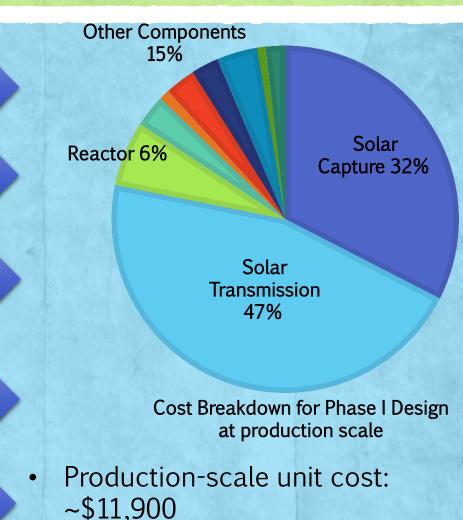
Useful end products are created

No water, No grid electricity, No external inputs, Creates useful byproducts

Advantages of Phase I Design

- Completely <u>solar-based</u> design
- Fiber optics decouple solar concentrators from the reactor
- <u>High temperature applications</u> safely contained within the reactor chamber
- Batch design allows for <u>disinfection</u> and waste stabilization in a single processing step
- System generates valuable end products
 - Char solid fuel, soil amendment, adsorbent
 - Disinfected urine fertilizer
 - Excess heat home use or water heating

Key Challenges Identified in Phase I

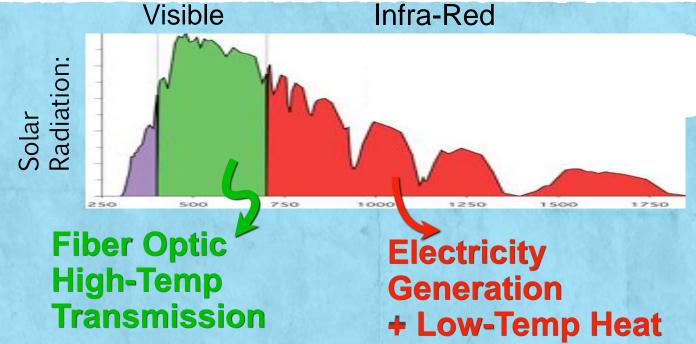

High Cost of Solar Concentrator

High Cost of Solar Transmission

Limited number of people served

Inability to process waste on cloudy or high pollution days

Durability and security concerns



- Most expensive components:
 - Fiber optics
 - Solar concentrators

PI Challenges → PII Advances Technology Addresses Key P1 Program Challenges

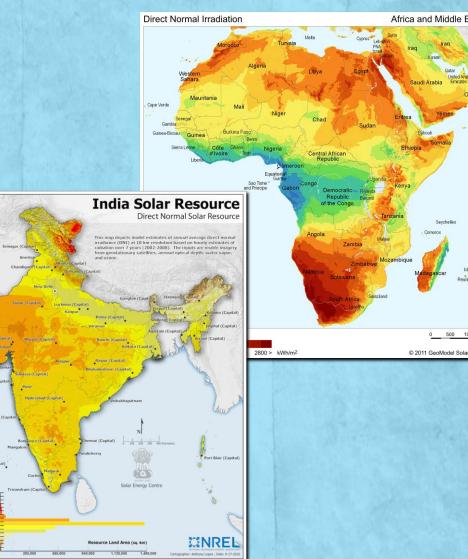
	Colorado (CU) Phase 1 Key Program Challenge:	BrightSpace Partner Technology Enables:
1	High Cost of Solar Transmission	Fiber Optic Technology reduces Cost/Power by 10x.
2	High Cost of Solar Capture	Cost/Collection Area reduced by up to 8x from prior approach. New collectors utilize high volume production process with 30+ year lifetime
3	Limited # of People Served	High-density energy utilization services up to 100 people/day in single, standard (8'x8'x20') "Shipping Container" design.
4	Inability to Process Waste on <u>Cloudy Days</u>	Electrical 'co-generation' provides up to 15 kW-hrs of electricity with battery backup for offline (cloudy) operation. Higher energy density supports longer thermal storage.
5	Durability/Security Concerns	Protected collectors and rooftop mounting decrease failure modes. Caged system protection for Security. Low-profile.

Phase II Technology Approach

- Collects Solar Energy & Split Spectrum:
 - Visible Portion transmit through Fiber Optic Cables for Daylighting in Buildings
 - Infrared Portion convert into electricity, up to 30% efficiency
- Designed around Low-Cost and Long-Lifetime:
 - For Commercial Buildings require low cost, and high energy density
 - Breakthrough technology minimizes costs of collection, transmission & conversion
 - 20-30 year lifetime for installations and minimizing service

FYI about 'DNI'

• "D.N.I."


- = "Direct Normal Insolation"
- Solar energy, per m², per day
- Measured in "kWhrs/m²/day"

• CU P1 assumed 3.2

Overly conservative
<u>Much</u> better in Africa & India!

• Real Values:

- India: 75% of country 5.0~6.0
- South Africa: mostly 6.0~7.0
- East Africa: mostly 5.0~6.0
- West Africa: mostly 4.0~5.0

Cost Reduction

Fiber Transmission6.250.6310x $Cost / OpticalPower($/W_{o})6.250.6310xUnique fibers to reactorfor even heating(#)8 fusedbundles24 or 48 cables(W/ many fiberseach)(a lot)Solar Capture Area(#)8 fusedbundles10 or 48 cables(W/ many fiberseach)(a lot)Solar Capture Area(#)$25(film) +$100(substrate& framing) =$15 ~ $304-8x$			Univ. of Colo. Phase I	BrightSpace Approach	Improvement
Power $(3/16)$ 6.23 0.03 $10x$ Unique fibers to reactor for even heating $(#)$ 8 fused bundles $24 \text{ or } 48 \text{ cables}$ $(w/ many fiberseach)$ $(a \text{ lot})$ Solar Capture Area $(#)$ 8 fused bundles $(*)$ $(a \text{ lot})$ Solar Capture Area $(5/m^2)$ $\$25(\text{film}) +$ $\$100$ $(substrate& framing) =\$15 - \$304-8x$	Fiber Transmissi	Fiber Transmission			
Onique fibers to reactor for even heating (#) 8 fused bundles (w/ many fibers each) (a lot) Solar Capture Area \$25(film) + \$100 (substrate & \$15 ~ \$30 4-8x Cost of Solar Collection Area (\$/m²) \$15 ~ \$30 4-8x		(\$/W ₀)	6.25	0.63	10x
Cost of Solar Collection Area $($/m^2)$ $$25(film) + 100(substrate& framing) =$15 ~ $30$4-8x$		(#)		(w/ many fibers	(a lot)
Cost of Solar Collection Area $($/m^2)$ $$25(film) + 100(substrate& framing) =$15 ~ $30$4-8x$					
Cost of Solar Collection Area\$100 (\$/m²)\$15 ~ \$30 4-8x (\$/m²)\$framing) =	Solar Capture Are	Solar Capture Area			
BrightSpace	Collection Area	(\$/m²)	\$100 (substrate	\$15 ~ \$30	4-8x

(Assumptions: 1k/yr production, 800kJ/person/day, DNI = 5.0)

		Univ. of Colo. Phase I	BrightSpace Small	BrightSpace Large
# of Collectors	(#)	8	24	48
Peak Power / Collector	(W ₀)	93	115	115
Total System Peak Fiber Power Delivery	(W ₀)	750	2,730	5,470
Daily Fiber Light Energy	(MJ)	13.4	52.4	104.8
PreHeat / Disinfection 50°C Energy <i>(@50% eff)</i>	(MJ)	0	32.5	65
Total Energy Delivered	(MJ)	13.7	84.9	169.8
# of People Serviced	(#)	6	38	76
10yr - \$/Person/Day	(\$)	\$0.45	\$0.02	\$0.02
Electricity Generation/Day	(kW- hrs/d)	none	5	10

Collector System Options (Assumptions: CU P1 Reactor Efficiency = 35%, 800kJ/person/day)

Small System Scenario

- 24 Solar Collectors
- Fits Over Container Footprint
- Electricity Generation:
 - 3~7.5 (kWhr/day)

Large System Scenario

48 Solar Collectors Extend Footprint w/ Rain Awning Electricity Generation: . 6~15 (kWhr/day)

		DNI	People Served (#)	Cost of Use / Person / Day (\$)	Electric Generated (kW-hrs/d)	
		3.0	23	\$0.034	3.2	
		4.0	31	\$0.025	4.2	
		5.0	38	\$0.020	5.3	
		6.0	46	\$0.017	6.4	
		7.0	54	\$0.014	7.4	
B	BrightSpace 🗣					

D	NI	People Served (#)	Cost of Use / Person / Day (\$)	Electric Generated (kW-hrs/d)
3.0	0	46	\$0.032	6.4
4.0	0	62	\$0.024	8.5
5.0	0	76	\$0.019	10.6
6.	0	92	\$0.016	12.7
7.	0	108	\$0.014	14.8

Phase II Approach – Tailored Treatment

Treatment Level 1:

DISINFECTED FECAL SLUDGE for safe transport and disposal

DISINFECTED URINE for liquid fertilizer

Treatment Level 2:

DRIED FECAL SLUDGE for fertilizer or industrial fuel

DISINFECTED URINE for liquid fertilizer

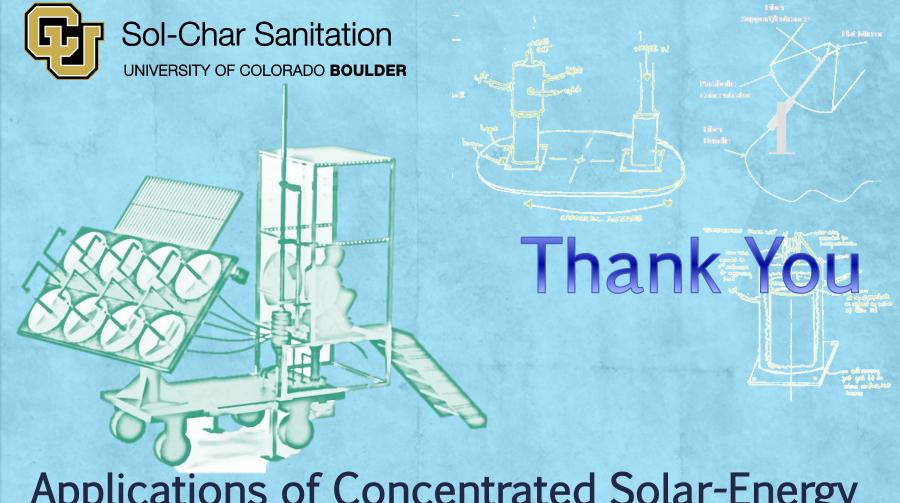
Treatment Level 3:

CHAR for soil amendment or briquetting

DISINFECTED URINE for liquid fertilizer

Business Model Evolution

Providing Electricity, Showers, Char, etc. allows new Opportunities


Services Encourage Adoption

- electricity enabling product
- hot showers
- biochar/briquettes for sale
- size provides village 'center', and enables private business caretaker and security resources
- could scale up or down
- 'poop credits' offered at use to reduce cost of other desired services encourage adoption

Applications of Concentrated Solar-Energy in Innovative Sanitation Solutions

Karl Linden, Professor, University of Colorado USA Hanoi, Vietnam January 19-22, 2015

karl.linden@colorado.eda

Phase II Approach – Design Considerations

Available Sunlight

- Year-round
- Seasonal sun н.
- Atmospheric pollution

User Scale

- Family, private use
- Household shared
- Public shared
- Municipal treatment

Setting

- Urban.
- Peri-urban/Informal settlements
- Rural

Markets for End Products

- Agricultural
- Household energy
- Industrial energy

Supply Chain Maturity

- Mature: available machine shops, electronics shops, skilled technicians
- Immature: needs transportation infrastructure for imports

Proved concept and developed a working research prototype. Phase | success!

Need to partner with industry/research to reduce costs and improve efficiency.

Consider modular treatment system with flexibility in treatment levels to improve economics, and provide useful end products.