Exploring lime (Ca(OH)₂) treatment of sludge: household and agricultural trials

Irina Chakraborty, Rachel Pringle, Chris Nicoletti, Yi Wei, Cordell Jacks

BOLD IDEAS FOR HUMANITY. DES IDÉES COURAGEUSES POUR L'HUMANITÉ. **iDE**

Background

- Latrine usage growing in Cambodia, but limited sludge management options
 - Pump trucks expensive or not available
 - Users/professionals empty pits with no protection
 - Both dispose of sludge unsafely

winnipegfreepress.com

businessfightspoverty.org

Background

- Hydrated lime Ca(OH)₂ for wastewater treatment
 - inactivate pathogens
 - reduce odors
- Widely available
- Users familiar with lime's disinfectant properties
 - animals shelters
 - fish ponds

Background

- Some fecal waste reuse in agriculture accepted
- Acidic soils around Cambodia limit productivity
- Lime-treated waste: potential for a soil amendment that adds nutrients and raises pH, reducing risk of untreated sludge application

Objectives

Evaluate the feasibility of

- 1) applying lime to pits on a household level,
- 2) resource recovery and usage,
- 3) marketing lime to households

Study components

- Benchscale fecal waste and lime tests (WEDC 2014)
- 2. Agricultural trials: treated waste-amended soil, effect on corn yield
- 3. Household tests with lime

Study components

- Benchscale fecal waste and lime tests (WEDC 2014)
- 2. Agricultural trials: treated-waste amended soil, effect on corn yield
- 3. Household tests with lime

Objective

- Demonstrate use of lime-treated sludge for agriculture
- Quantify effect on crop growth and yield

Method

- Lime mixed with sludge
- Clear supernatant applied to soil
- Corn planted
 - used as animal fodder
 - less resistance to reuse, not for direct human consumption

L+S	L+S	L	
L	L	L+S	
С	С	С	
L+S	L	L	
С	L+S	L+S	
L	С	С	

Study components

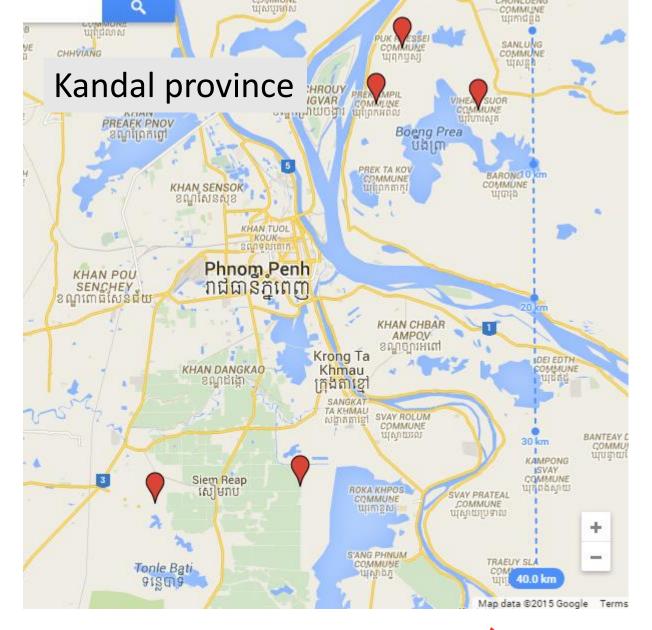
- Benchscale fecal waste and lime tests (WEDC 2014)
- 2. Agricultural trials: treated-waste amended soil, effect on corn yield
- 3. Household tests with lime

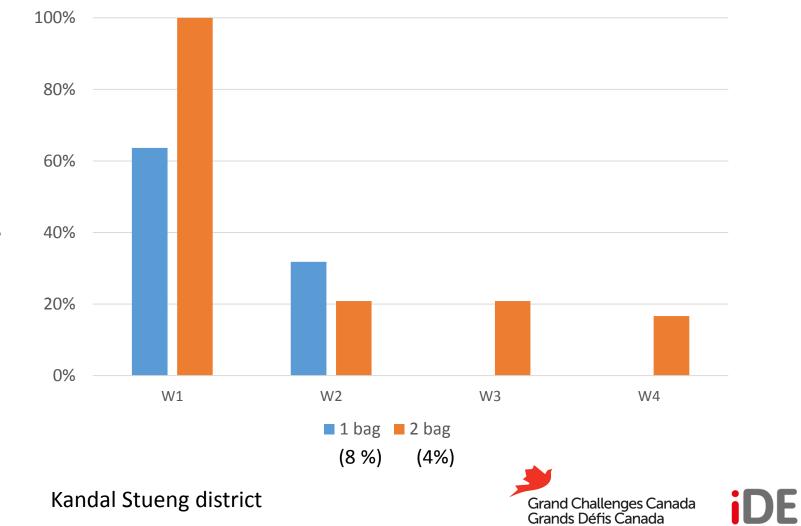
Objectives

- Compare lime application protocols to be used by households
- Interview households on attitudes towards lime and reuse

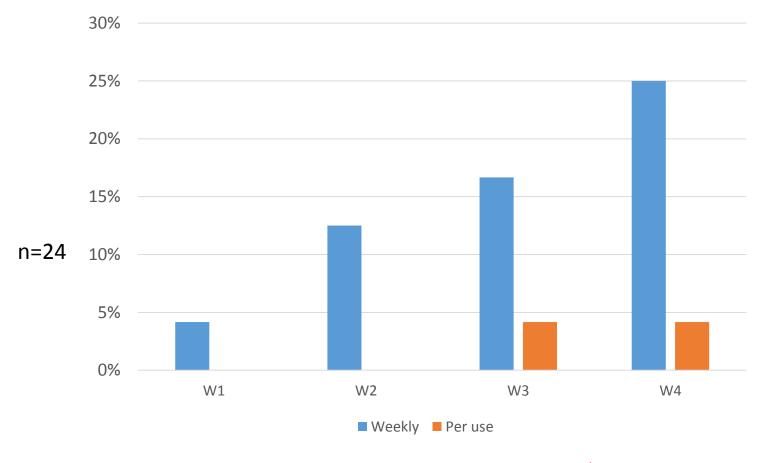
Study parameters

- 1.5 % (w/v) lime based on benchscale results and research by others
 - 1.5 % (w/v) raises pH to 12, which eliminates most pathogens given sufficient contact time
- Sufficient liquid required
 - Mixing distribution of Ca(OH)₂ in sludge
 - Higher concentrations of solids require higher concentrations of Ca(OH)₂ to increase pH


	Old latrines (> 2 years); Solid lime added to pit by RA	New latrines (< 4 months); Lime added by HH members through pan as a slurry	
4 % (w/v)	1 bag 56 HH	Each use 39 HH	5 % (w/v)
8 % (w/v)	2 bags 57 HH	Weekly 39 HH	



- 1. Conduct intake interviews with households
- 2. Apply lime or provide instructions on lime use
- 3. Return weekly
 - 1. measure pH in the pit
 - 2. measure amount of lime applied by HH (volume and weight remaining)
- 4. Conduct second interview with households on experience and impressions of lime



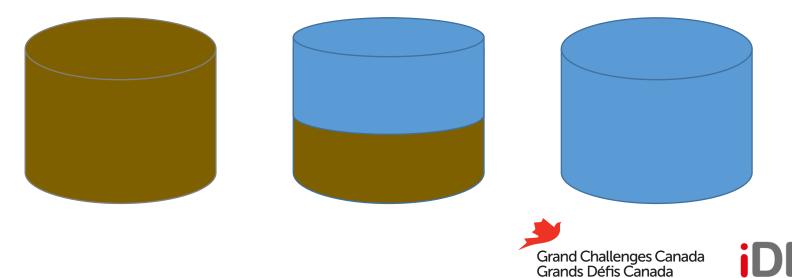
Pits pH ≥12 Pit addition

Pits pH ≥12 Pan addition

Ksach Kandal district

Grand Challenges Canada Grands Défis Canada

- Top of pits sealed completely during installation, including small lid
 - Safety
 - Overflow
- Most households prepared to break pits
- Very low levels of solid waste, tho some "secret wastes"



businessfightspoverty.org

- Content of pits varies widely, based on exfiltration/infiltration rates
 - Completely solid, unmixable by hand ("shovelable")
 - Thick sludge at the bottom of pit, liquid on top
 - Completely liquid content with no solid layer at bottom

Conclusions

Technical

- Mixing: challenge for adding to pits
- Weekly addition most promising
- Potential for technological intervention to improve compliance

Conclusions

Users

- Very positive impressions of lime use
 - Less smell
 - Kills germs
- Users are comfortable handling lime
- Wary of lime dust; slurry important
- Risk of inaccurate dosing due to settling of lime slurry
- Cost of materials per household: 2 USD/month

Conclusions

- Potential for non-infiltrating (completely sealed) systems
 - Effective treatment of liquid phase
 - Reduces need of emptying
- Reuse of liquid phase promising
 - Easy to apply, high N content $(200 1000 \text{ mg/L NH}_3)$
 - Low risk
 - Clear liquid -> less disgusting

On-going

- Supply chain research
- Detailed characterization of lime-treated sludge
- Quantify effect on yield and growth
- Market research and product design (iDE's HCD lab inCompass)

Further work

- Considerations for eventual disposal of sludge
- Better characterization of existing pit sludge properties

