

Resource Recovery and Reuse

LESSONS FROM R4D IN PRODUCTIVE SANITATION

Josiane Nikiema, PhD

Sub-Theme Leader / Water Quality and Safe Water Reuse & Researcher – Environmental Sciences

Contact:

West Africa Office – Accra, Ghana

Fax: (+233) 302 784 752

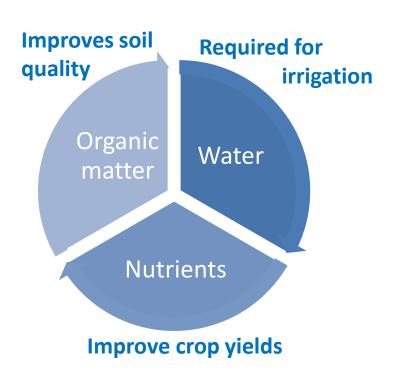
Phone: (+233) 302 784 753/4

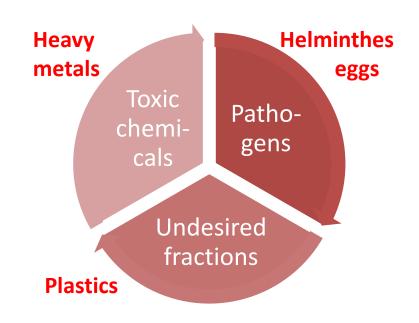
Email: J.Nikiema@cgiar.org

May, 2015

International
Water Management
Institute

OUTLINE


I. History of IWMI's work


II. Lessons

WHAT IS CONTAINED IN WASTE?

Opportunities

Challenges

Safe quality improvement required

HISTORY - WASTEWATER MANAGEMENT

Between 2003 and 2007. Understanding the issues.

Starting point What is the quality of water used for agriculture?

Quality control

Is there a danger?

Tracing the contaminants When, where and how much?

Water quality in urban/periurban areas is poor for unrestricted irrigation Quality of vegetables is poor

Most of the contamination occurs on-farm (soil and inputs)

Ghana; Ongoing in Burkina Faso, Cameroon, Mali

POSSIBLE STRATEGIES FOR RISK MITIGATION

Between 2006 and 2010. Development of the multiple barrier approach.

On-farm

- Irrigation
- Treatment (sand filters / settling ponds)

Postharvest handling e.g.
Practices in transfer stations and local markets

Before consumption handling

Washing methods at kitchens

A combination of at least two strategies needed for effectiveness

Recommendations made, taking into account local practices

Knowledge sharing (trainings / WHO)

Ghana, Burkina Faso, Togo, Benin, Cote d'Ivoire

POSSIBLE STRATEGIES FOR SUSTAINABLE OPERATION OF WASTEWATER TREATMENT PLANTS

Since 2011. Testing business models for safe water reuse.

Treatment plant designed to allow reuse

Safe reuse in irrigation

Safe reuse in aquaculture (e.g. Catfish)

On-site energy production (e.g biogas)

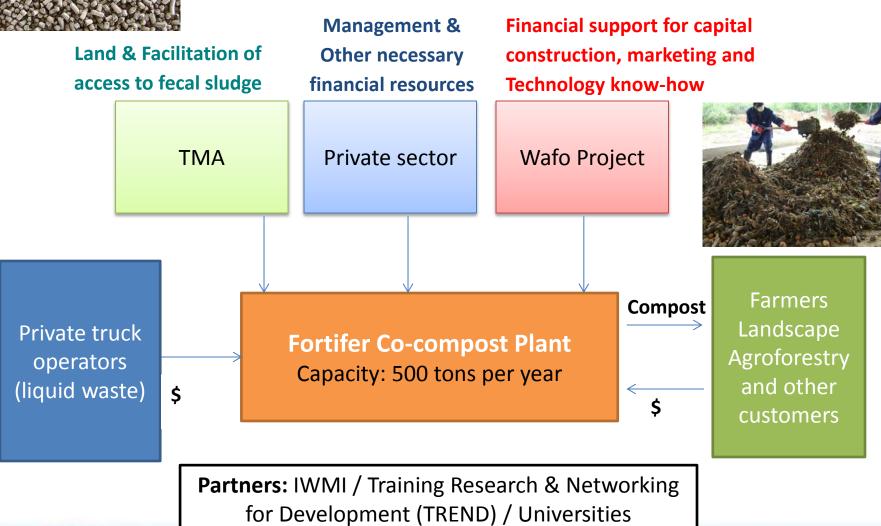
Financial sustainability of the initiatives / risk mitigation

Clarias gariepinus (African catfish)

Ghana; Exploring for Burkina Faso, Benin and Mali

A water-secure world

www.iwmi.org


HISTORY OF FECAL SLUDGE (AND ORGANIC SOLID WASTES) REUSE GUIDELINES

Objectives	Analysis of nutrient recycling loop model, demand, supply, technical and institutional issues	Testing recycling options	Enrichment Field applications	Pelletization	Commercializa and process option	
	2000	2001-2004	2005-2010	2011-2012	2013 - 2016	=
Outcomes	- Farming systems identified - Market demand, institutional arrangement	Recommenda -tions on best options	Excreta-based fertilizers developed		PPP development	
Donors	IDRC	French pSEau, SDC, KEZO, SANDEC	Swiss NCCR, IDRC, BMGF		BMGF, DFID, GCC	

BUSINESS MODEL FOR THE FIRST CO-COMPOST PLANT

LOOKING BACK, ...

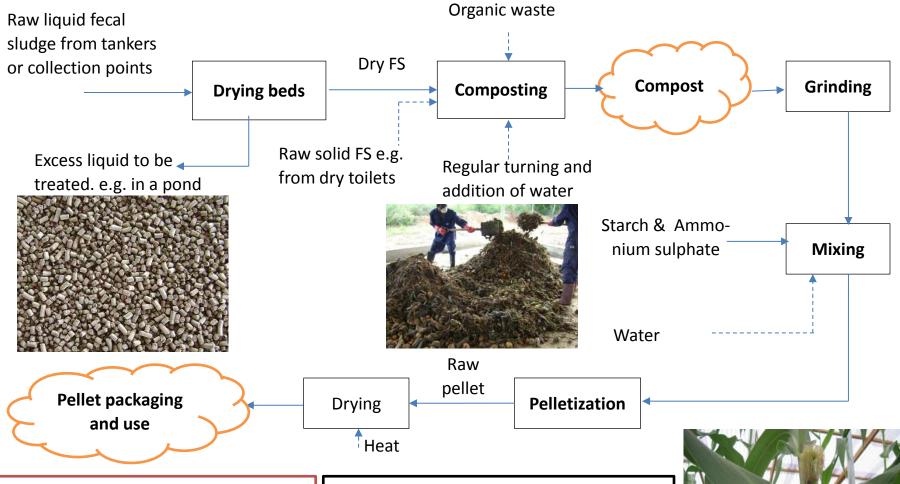
What worked?

- Research:
 - Strong / Adequate knowledge acquired
 - Good understanding of the challenges
 - Technology innovation
- Some buy-in from donors
- Positive influence on policy (MoFA, Ghana; WHO)

LOOKING BACK, ...

- The private sector per se is not a panacea for solving the sanitation problems.
 - There are strong and weak players
 - We need to rethinking partnerships and supporting legislations
- For Reuse, we need e.g. fertilizer companies and not only companies strong in waste collection and transformation.
- Government can support reuse/recycling;
 - Favorable policy environment
 - Many permissions needed
 - Processes for getting these are cumbersome
 - Imposing the selling of X% of compost (e.g. in India).
 - Clear protocols with standards and benchmarks.

The authors would like to express their gratitude to:


- Donors [Bill and Melinda Gates Foundation (BMGF), Department for International Development (DFID) and Grand Challenges Canada (GCC)].
- All partners! (TREND Group: Training Research and Networking for Development;
 VVU: Valley View University; BNARI: Biotechnology and Nuclear Agriculture
 Research Institute, Ghana).

THANKS FOR YOUR KIND ATTENTION!

THE FORTIFER TECHNOLOGY, FOR SAFE RECYCLING OF NUTRIENTS AND ORGANIC MATTER

- Fortifer is safe.
- Volume reduced by 20-50%

International Water Management Institute No dust during application

- Nutrients are gradually being released into the soil
- < 10 US\$ per bag of 50 kg

FIELD TRIALS WITH TOGO MARSHALL RICE VARIETY

Rice field (conventional Farmer's practice)

200 kg of NPK 15-15-15 and 100 kg of AS. Top dressed with 50 kg of urea

Rice field with Fortifer.

Source: Ofosu-Budu, 2010, 2011, 2012

1,000 kg of enriched compost. Top dressed with 30 kg of ammonium sulfate (AS)

Yields were 20-50% higher with Fortifer

