

Scaling-up small-scale sanitation in a disabling institutional and regulatory environment:

Experiences from Egypt

Egyptian-Swiss Research for Innovations in Sustainable Sanitation (ESRISS)

BORDA Symposium, Bremen, 11.11.2015

Philippe Reymond, Eawag-Sandec

philippe.reymond@eawag.ch

www.sandec.ch/esriss

Eawag: Swiss Federal Institute of Aquatic Science and Technology

Context

85% of the rural areas in Egypt without WW treatment

⇒ about 4,700 villages and **30,000 scattered settlements**

Main goal of the ESRISS Project:

Development of a wide-scale replicable model for small-scale sanitation in the Nile Delta

Small-scale: < 5,000 cap.

COST-EFFECTIVENESS

CONTEXT-APPROPRIATENESS

ESRISS' three main components

Assessment of challenges and success factors of past small-scale sanitation initiatives in Egypt

B

Development of a data baseline and a model-based planning tool to estimate wastewater characteristics

C

Policy recommendations

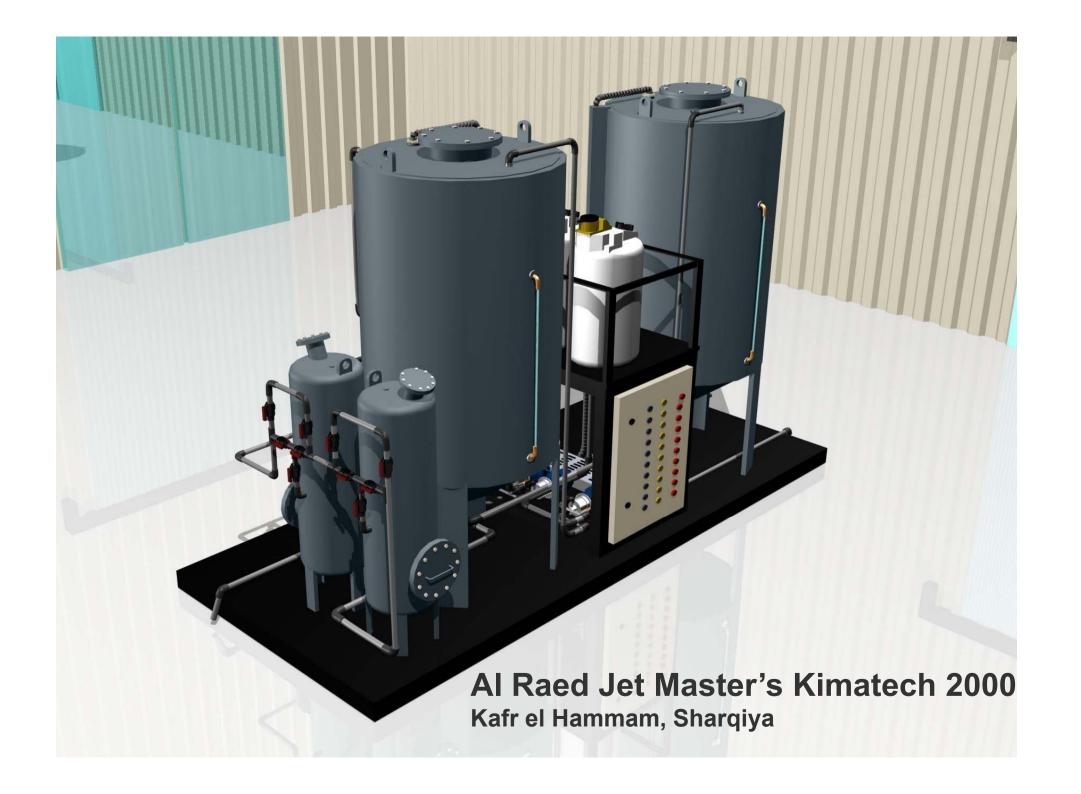
ESRISS methodology

Systematic assessment using the **Enabling Environment Framework**

الدعم الحكومى Government Support

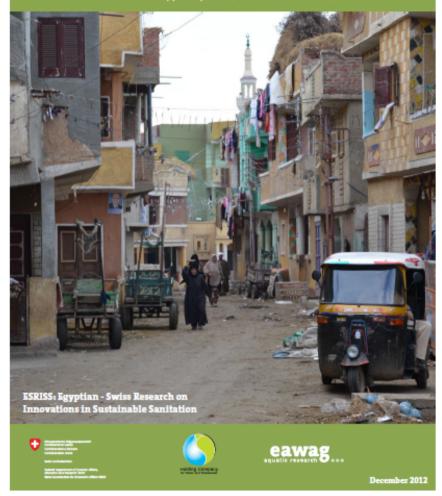
Socio-cultural Acceptance القبول الثقافي والإجتماعي

Financial Arrangements الترتيبات المالية


Legal Framework أطار عمل قاتونى

Institutional Arrangements الترتيبات المؤسسية

Skills and Capacities المهارات و القدرات



Small-Scale Sanitation in Egypt: Challenges and Ways Forward

Philippe Reymond, Rifaat Abdel Wahaab, Moustafa Moussa

Factsheets on Small-Scale Sanitation Initiatives in Egypt

Addendum to the Report "Small-Scale Sanitation in Egypt: Challenges and Ways Forward"

Philippe Reymond

ESRISS: Egyptian - Swiss Research on Innovations in Sustainable Sanitation

eawag...

December 2013

Yall and and Sales

- Philippe Reymond, Eaway/Sandin
- Dr. Riffant Abdel Wahash, HCWW
- Dr. Mountafa Mousea

The ultimate goal of the ESRISS Project is the development of a wide-scale replicable model for small-scale sanitation in the Nile Delta. By "small-scale" we refer to "settlements or groups of settlements or up to 5,000 inhabitants". In our approach, the whole sanitation system, including management schemes, is considered. Cost-effectiveness and context-appropriateness are key targets. This document synthesises the main findings detailed in the ESRISS report entitled "Small-scale sanitation in Egypt: challenges and ways forward".

- 1. Development of a clear institutional strategy
- 2. Standardisation of treatment units
- Centralised 06M management under the leadership of HCWW
- Selection of appropriate collection & treatment options
- 5. Adaptation of laws and regulations
- 6. Move beyond "business as usual"
- 7. Development of a data baseline
- 8. Focus on proliminary assessment
- 9. Improvement of the project management cycle
- Transparency and dissemination of lessons learnt

" الصرف الصحي في المجتمعات الريفية الصغيرة في مصر" ١٠ نقاط للمضي قيما

وتتلخص العشر نقاط الرئيسة في الآتي:

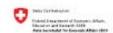
ESRISS Project

- ١. وضع استراثيجية مؤسسية واضحة
- ٢. الثوحيد الثياسي لوحداث العالجة
- ٣- الإدارة الركزية للتشغيل والصيانة تحث فيادة
- المركة القابضة لياه الشرب والصرف الصحي
- أحثيار نظم معالجة مناسبة من بين العديد من الخيارات الثاحة
 - ٥. ثهيئة القوانين واللوائح النظمة
 - ٦. تحاور سيناريو "بقاء الأمور على حالها"
 - ٧. كتعبة البيانات الأساسية
 - ٨- التركير على الثقييمات الأولية
 - أحسين إدارة الشروع
 - ١٠- الشفاقية ونشر الدروس السالفادة

المؤلفون

- م. فيليب ريمون
- المهد السويسري للملوم والتكثرلوجيا النائية philippe.reymond@eawag.ch (Eawag/Sandec)
 - ألد. رفعت عبد الوهاب
 - الشركة القابضة ليناه الشرب والصرف الصحي (rawahaab@yahoo.com (HCWW)
 - د. مصطفی موسی
 - كلية الهندسة ـ جامعة خلوان m.moussa@dalft.environment.net

إن الهدف الأساسي للمشروع ESRISS هو قطوير تموذج قابل التكرار على تُطاق واسع للصرف الصحي في الجِتْمعاث الريفية الصفح قضى منطقة دلك النبل، وعندما تشول



Policy brief: 10 POINTS to move forward

THE CRITICAL ISSUE IS INSTITUTIONAL AND MANAGERIAL, NOT TECHNICAL

What is a disabling institutional environment?

- No clear responsibility for rural sanitation and lack of vision
- No constructive collaboration between the Utility (HCWW), the Ministry of Water Resources and Irrigation (MWRI) and the Ministry of Health (MoH)
- Lack of faith in small-scale system at the Utility
- Lack of experience in the Utility and in the local private sector
- Management tradition of overstaffing with underskilled people
- Reluctance to increase fees and weak fee recovery

What is a disabling regulatory environment?

- Effluent standards are not adapted for rural sanitation
 - ⇒ Too stringent («all or nothing philosophy»)
 - ⇒ In particular COD, DO and pathogens are an issue
 - ⇒ Not linked to the quality of receiving water bodies

Standards	Egypt	Morocco	Jordan	EU
COD (mg/L)	80	250	150 / 300*	125
BOD (mg/L)	60	120	60	25
TSS (mg/L)	50	150	60 / 120*	35

^{*} For biological treatment plants or treatment plants with polishing ponds

What is a disabling regulatory environment?

- No regulation protecting communities and private sector for the management of all or part of the sanitation system
- Planning and design standards currently are hindering factors
 - ⇒ No Code of Practice with alternative systems
- e.g. the pragmatic use of small drains should be approved by MWRI

ESRISS' three main components

Assessment of challenges and success factors of past small-scale sanitation initiatives in Egypt

Development of a data baseline and a model-based planning tool to estimate wastewater characteristics

C

Policy recommendations

No more pilots!

General saying: "Pilots never fail, pilots never scale..."

- \Rightarrow Think at scale!
- ⇒ Pilots need to be realised AT SCALE!
- ⇒ Allow piloting of management schemes with critical mass of projects and centralised management
- ⇒ Pilot economies of scale both at implementation and management level
- ⇒ Focus on an increased cost-effectiveness

Ways forward

- Start to think from the supply side / business perspective
- Think in terms of economies of scale and critical mass
 - ⇒ Standardisation of the units and the management
- Show the potential for the private sector and in terms of job creation
 - ⇒ Small scale sanitation is a **new market**!
- Know-how transfer for prefabricated systems, capacity-building
- Advocating for awareness at the top level of the State
 - ⇒ Aiming for a national policy
- ⇒ Trying to reform regulations one-by-one does not work in Egypt.
- ⇒ Only a decision from the top can lead to quick change

Standardisation of collection & treatment units

⇒ Explore the concept of locally produced **prefabricated units**

Benefits:

- Quality under control
- No price negotiation every time
- Costs under control
- Time saving in construction process
- Opening of a promising market
- Modularity and flexibility

An observation...

Small-scale sanitation in Egypt functions very well in touristic resorts but not in small rural villages.

⇒ Management issue

⇒ Guarantee issue

 \Rightarrow Cost-recovery issue

⇒ Regulatory issue

Involvement of the private sector

LESSONS LEARNT	RECOMMENDATIONS / WAYS FORWARD	
Involvement of the private sector:		
 The private sector seems to be mainly playing against small-scale sanitation: high resistance to innovation, lack of know-how in that field, huge overheads, poor construction quality very long implementation time. 	 Encourage design-build-operate mechanisms Investigate potential business models. Encourage local prefabrication of components Train local engineers and masons at governorate-level. 	

Involvement of the private sector

The role of the private sector would be two-fold:

- 1. **Designing**, build and monitor monthly the small-scale sanitation systems.
- 2. Manufacture prefabricated components of the sanitation systems (treatment modules, manholes, etc.)

Open questions:

- At which level/scale can such companies be viable?
- Potential business models?
- Necessary legal & regulatory framework?

⇒ Small-scale sanitation is a new market in Egypt

Role of the institutions

How to encourage the private sector and get it right ?

- 1. Licensing?
- 2. Certification?
- 3. Fostering joint ventures with international companies?
- 4. Mechanism guaranteeing cost recovery?
- ⇒ Would this be the role of a centralised management unit or specific department within the Utility?

Increase cost-effectiveness

- Think in terms of economies of scale and critical mass
 - ⇒ Standardisation of the units and the management
- Modularity and phased implementation:
 - Reduce idle capacity
 - Limited planning horizon (max. 15 years)
- Determine the management and financial arrangements BEFORE the final technology selection

Management schemes

LESSONS LEARNT	RECOMMENDATIONS / WAYS FORWARD
Management schemes:	
• Isolated technology pilots fail.	 Decentralised sanitation systems require a centralised management. Need for a dedicated structure, with
Human resources required is a concern for the institutions	 professionals specifically trained, in order to concentrate the skills. Partial delegation to the
	communities

Centralised management unit

What is needed is the trial of a large-scale management scheme.

> Interface between the institutions, the private sector and the communities.

The three main questions to be answered are:

- ✓ How to start?
- ✓ What should be the status of such a unit and where should it be embedded?
- ✓ What is the setup that would best be able to encourage the private sector?

Centralised management unit

Two Scenarios

- a. Incremental approach: start at local level, in a defined area
 - approach of "strategic niche management", e.g. As Salam Canal area

- b. Implement it directly as a national strategy and operate institutional changes
 - > in that case, a Special Status Unit

Open question: scale of the centralised management unit(s)?

Moreover...

- Increase the credibility of small-scale systems
 - ⇒ Lower the risk of failure
- Improve project planning
 - ⇒ Provide local consultants with tools which help them get:
 - 1. Relevant assessment of the initial situation
 - 2. Good data analysis
 - 3. Estimation of design parameters on a context-specific basis
- Understand better the quantity and characteristics of the wastewater to treat; village-specific design criteria
 - ⇒ Facilitate local Utility and consultants to take up small-scale sanitation with a minimal risk

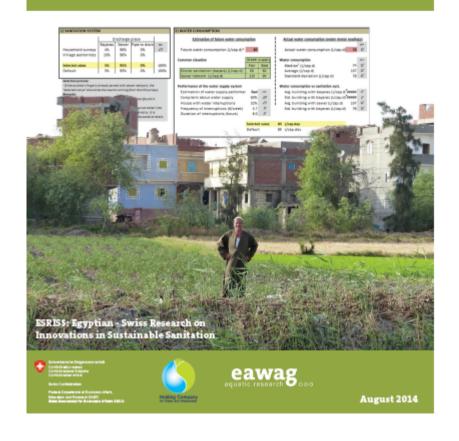
Improve design parameters

⇒ Small villages, ezbas, are very heterogeneous

Parameters	Range [mg/L]
BOD	200 – 1000
COD	400 – 2500

Main result for the practitioners:

A tool to estimate wastewater quantity and characteristics



Design Parameters

A Model-Based Tool to Quantify and Characterise Wastewater in Small Nile Delta Settlements

User Manual

Philippe Reymond & Colin Demars



A Tool Package

Model estimation		Daily av	Daily average		Morning peak	
Parameter	Unit	Conc.	Precision	Fact.	Conc.	
Flow	m3/day	290	20%	1.6	460	
Flow	L/min	200	20%	1.6	320	
COD	mg/L	1390	30%	1.3	1810	
BOD ¹	mg/L	710	30%	1.2	850	
TS ²	mg/L	3040	30%	1.5	4560	
TSS	mg/L	410	30%	1.4	570	
TN	mg/L	230	30%	1.4	320	
TP	mg/L	13	30%	1.4	19	

TOTAL: MAX. 3 WORKING DAYS

Household survey questionnaire

Household survey questionnaire نودج استيان المنازل

eawag

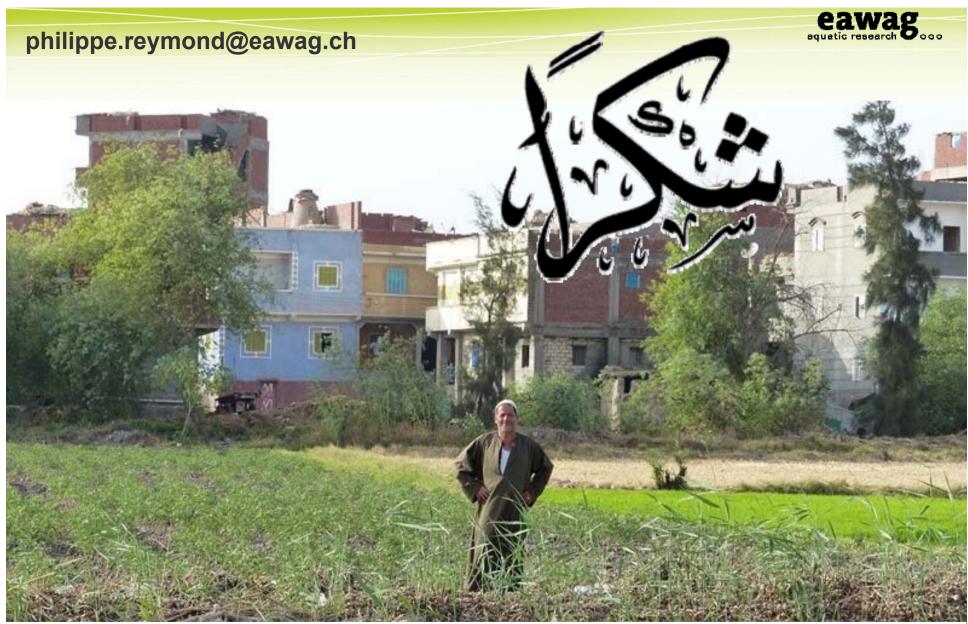
Household of the second of the

s allosane

Standards

Involvement of the communities

LESSONS LEARNT	RECOMMENDATIONS / WAYS FORWARD	
Involvement of the communities:		
 Communities mainly interested in getting rid of the wastewater. Sustainable cost recovery requires the people served by small-scale systems to pay more than official tariff. People in the unserved villages currently pay sometimes 20x more than those served by governmental systems. Villagers pay often more than the official tariff. 	 There is a capacity to pay: paying a fee covering O&M would be cheaper than what is currently paid. Bundle several services together, e.g. sanitation and solid waste. Beneficial enduses as an incentive. Technical support to the communities willing to pay for a sewer system. 	



Dealing with a disabling environment

- \Rightarrow Think at scale!
- ⇒ Critical mass and centralised management
- ⇒ Pilot economies of scale both at implementation and management level
- **⇒** Convince through business potential
- ⇒ Facilitate the work of consultants and contractors
- ⇒ Incremental implementation of disabling effluent standards
 - ⇒ Create new drivers of change

11/23/2015 42

Swiss Confederation

Federal Departement of Economic Affairs, Education and Research EAER State Secretariat for Economic Affairs SECO

