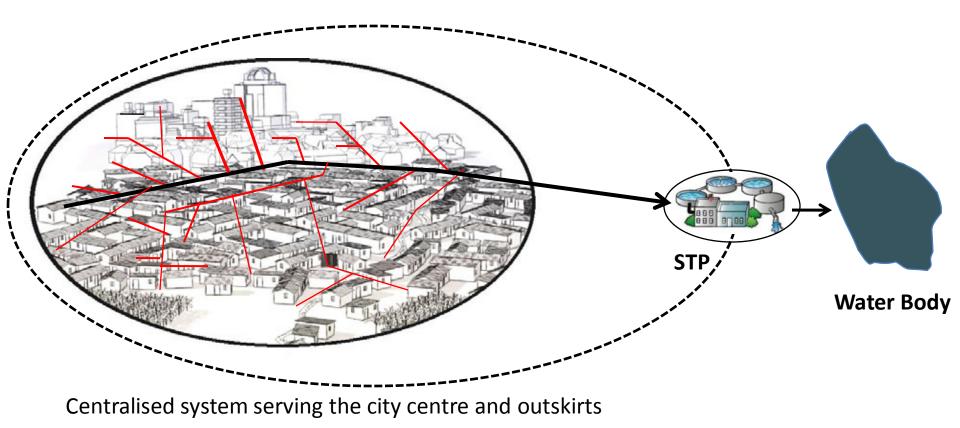


Decentralised Wastewater Treatment


Chhavi Sharda Email: chhavi@cseindia.org

Faecal sludge management – Complete sanitation solution?

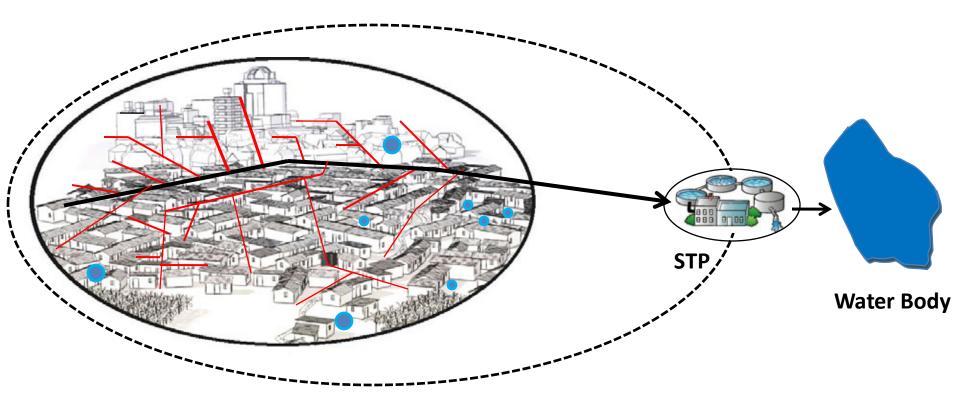
Conventional wastewater treatment Current sewage paradigm

4/4/2016

3

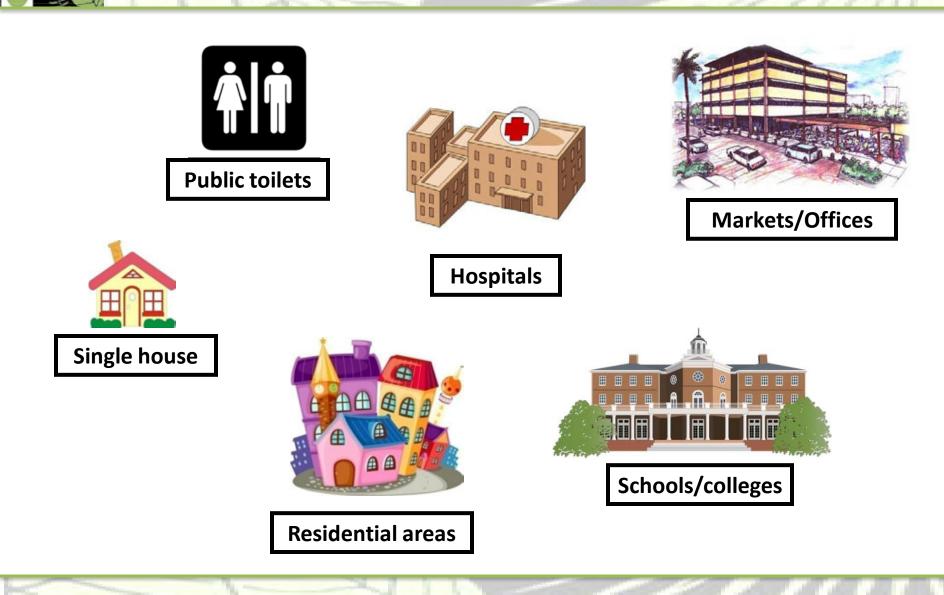
Cost Estimates of Select Technologies

Technology	Cost /mld (at 2008 prices) in Rs.lakhs
Waste Stabilization Ponds	25
UASB + Post treatment	55
Activated Sludge Process, C- Tech, FAB	87


 Cost of Interception & Diversion works (main trunk sewers, SPS excl. house connections, branch and lateral sewers) and cost of land acquisition is around Rs.
3-4 crore per MLD

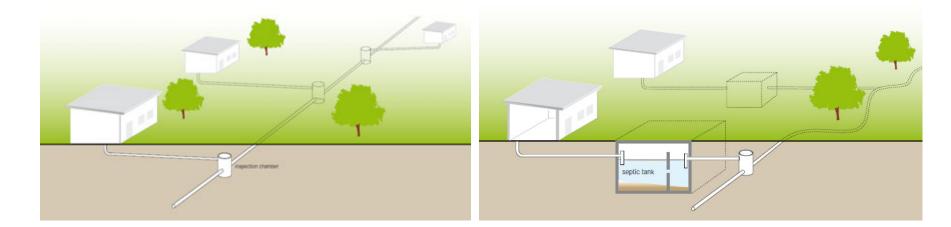
The administrative approval of the estimate has been accorded by Delhi Jal Board vide Resolution No 1267/DJB dated 09.10.06, Rs 4, 40,03,950/- for 7MGD pumping station at Punjabi Bagh.

- Estimated Class I & II Sewage Generation in year 2020 = 45000 MLD
- Cost would increase to the extent of Rs. 45,000 crore to Rs. 1,32,000 crore.


Note – Rs 1 lakh = USD 1,510/-, Rs 100 lakh = Rs 1 crore (USD = 151000/-), Rs 1 crore = Rs 10 million and Rs. 1 lakh = Rs. 0.01 crores

Conventional wastewater treatment and reuse Current sewage paradigm

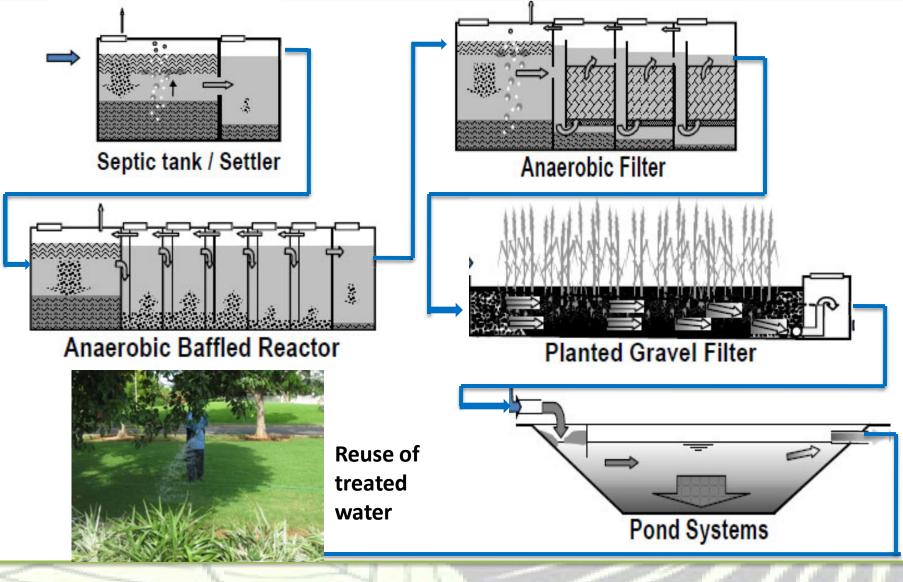
Incorporation of Decentralised Wastewater Treatment linked to local Reuse


DWWT Application

Water Management Team

6

Small Bore Sewage System/ Simplified Sewers


A simplified sewer has smaller diameter pipes laid at a shallower depth and at a flatter gradient than Conventional Sewers. The simplified sewer allows for a more flexible design at lower costs.

These can also be made solids-free sewer network that carries pre-treated and solid-free wastewater.

(Minimum sewer diameter 100mm, and the gradient is usually 0.5-1%)

Modules of a Decentralised Wastewater Treatment System

Water Management Team

8

4/4/2016

Types of Settlers

3 chambers

2 chambers

Anaerobic Baffled Reactor (ABR)

Area required : 1 sq m per cum

Anaerobic Filter

Filter materials

River bed stones

Crushed stones

High density clay aggregates

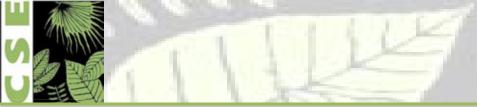
Pumice stones

Filter material after about 5-8 years

Planted Gravel Filter Bed (PGF)

Type of plants for PGF: Canna Indica

They can be yellow folowered, red flowered or sometimes orange



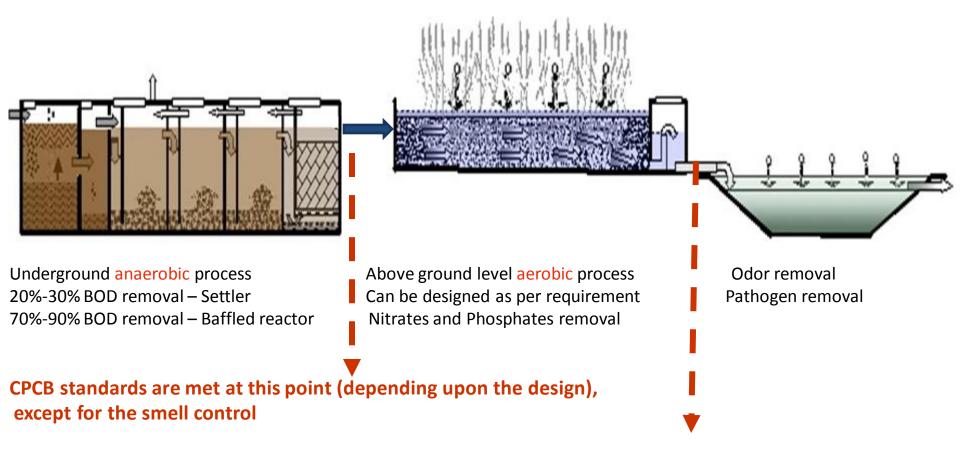
Type of plants for PGF: Typha angustata

Type of plants for PGF: Scirpus

Scirpus littoralis

Polishing Ponds

Designed to provide 1 to 3 days retention time


Area required : 1.2 sq m per cum

- Normally operate at a depth of 1 to 1.5 m depth
- Excessive detention time will increase effluent's suspended solids concentrations
 Tip: Use Gambusia to control mosquitoes
- Reduces E coli count

4/4/2016

Performance of DWWT

The right combination and dimension of the modules make DWWT successful

For setting up a DWWT system the following steps are followed:

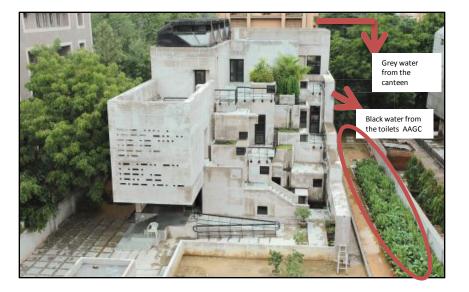
1. Define the objective for setting up the DWWT clearly

Example: For address the pollution caused to the surroundings.

2. Relevant data collection

- Example: Population and water consumption pattern
- 3. Site Feasibility: Identification of a feasible site (Topography, climatic conditions etc.)

4. Deciding the level of treatment required


5. **Designing** an appropriate treatment system

Recommended norms of treated sewage quality for specified activities at point of use Source: CPHEEO, Manual on Sewerage and Sewage, 2015

			Fire	Exterior	Non-contact impoundments	Landscaping, Horticulture & Agriculture			
							crops		
	Parameter		protection			Horticulture, Golf course	Non edible crops	Crops which are eat	
								raw	cooked
1	Turbidity (NTU)	<2	<2	<2	<2	< 2	AA	< 2	AA
2	SS	nil	nil	nil	nil	nil	30	nil	30
3	TDS	2100							
4	pH	6.5 to 8.3							
5	Temperature °C	Ambient							
6	Oil & Grease	10	nil	nil	nil	10	10	nil	Nil
7	Minimum Residual Chlorine	1	1	1	0.5	1	nil	nil	nil
8	Total Kjeldahl Nitrogen as N	10	10	10	10	10	10	10	10
9	BOD	10	10	10	10	10	20	10	20
10	COD	AA	AA	AA	AA	AA	30	AA	30
11	Dissolved Phosphorous as P	1	1	1	1	2	5	2	5
12	Nitrate Nitrogen as N	10	10	10	5	10	10	10	10
13	Faecal Coliform in 100 ml	Nil	Nil	Nil	Nil	Nil	230	Nil	230
14	Helminthic Eggs / litre	AA	AA	AA	AA	AA	<1	<1	<1
15	Colour	Colourless	Colourless	Colourless	Colourless	Colourless	AA	Colourless	Colourless
16	Odour	Aseptic which means not septic and no foul odour							

All units in mg/l unless specified; AA-as arising when other parameters are satisfied; A tolerance of plus 5% is allowable when yearly average values are considered.

DWWT – Institutional Building, CSE

Benefit-

Freshwater (groundwater and municipal supply) not used in low end usage.

Monthly saving – Rs. 400 municipal supply and Rs. 2,500 if recycled water is purchase from tankers

Centre for Science and Environment

Parameters	Details
Type of Building	Office Building
Source of Wastewater	Kitchen and Toilets
Capacity of the system	8KLD (Approx 150Users)
Re-use	For maintaining greenery
Capital Cost (2005)	Rs. 2,25,000/-
O&M Cost (per annum)	Rs. 30,000/-
Year of Implementat ion	2005

Oil Trap (Preliminary Treatment)

Settler (Primary Treatment)

Anaerobic Baffled Reactor (Secondary Treatment)

Planted Gravel Filter Bed (Secondary and Tertiary

Oil Removal from the wastewater coming out from the canteen

- Suspended solid removal
- Two chambered

Physical Appearance of Water samples after treatment from various modules

- Organic Degradation (BOD/ COD Removal)
- 10 chambered with anaerobic filters in 2 chambers
- Pebbles used as filter material
- Organic Degradation, Nitrogen and phosphate removal
- Gradient of about 1% to facilitate gravity flow
- Media River bed pebbles
- Plant species Canna, Typha

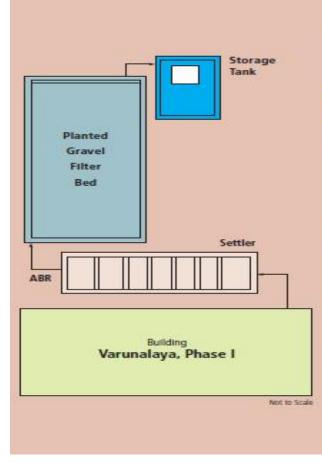
Vortex

Odour removal and nitrates and phosphates removal

Storage Sump

Storage capacity of 12KLD (approx. One and a half days of storage)

Treated water Reuse


Treated water reused in watering plants and landscape maintenance **Daily usage - ~** 4,000 Liters Per Day

DWWT – Institutional Building, Delhi Jal Board

Varunalaya, Delhi Jal Board		
Parameters	Details	
Type of Building	Office Building	
Source of Wastewater	Toilets	
Capacity of the system	8KLD	
Re-use	For maintaining greenery	
Capital Cost (2015)	Less than Rs. 16Lacs	
O&M Cost (per annum)	Not known yet	
Year of Implementation	2015 (Implemented by Delhi Jal Board)	

Model Project High visibility – high impact

Excavation at the site

Construction at the site

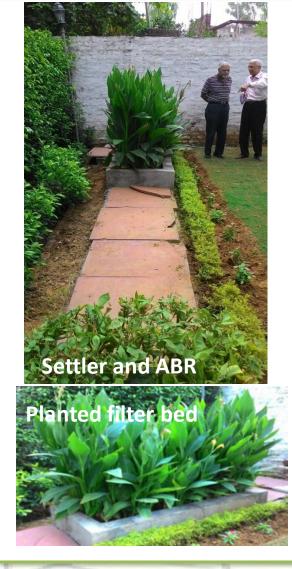
Top soil leveling for landscaping

Site after landscaping today

Layout

4/4/2016

Treated water


Reuse of treated water

Surrounding areas

Parameters	Before	After
рН	7.4	7.5
BOD (mg/L)	110	23
COD (mg/L)	344	96
Total Suspended Solids (mg/L)	376	97
Ammonia (mg/L)	30	20
Phosphate	Traces	Nil
Faecal Coliform (per 100ml)	3600	93

DWWT at Residential building – Individual House

Residential Building, Sainik Farm, New Delhi		
Parameters	Details	
Type of Building	Individual Residential Building	
Source of Wastewater	Kitchen, Bathroom and Toilet	
Capacity of the system	0.8 KLD	
Re-use	For maintaining greenery of the garden (500 L/ day)	
Capital Cost (2013)	INR 25,000/- (INR 10,000 for plumbing)	
O&M Cost (per annum)	INR 4,000/-	
Year of Implementat ion	2013 (Implemented by individual)	

No sewerage network in the area.

Self motivation.

THANK YOU

For more information:

Case studies of Decentralised/ Sustainable Wastewater Treatment Technologies Visit: cseindia.org/node/3798

Contact:

Chhavi Sharda Email: chhavi@cseindia.org