RESOURCE RECOVERY FROM FECAL SLUDGE

PILOT AND LAB-SCALE STUDIES AND BIOPROCESS MODELING

Kartik Chandran

Columbia University

Mainstreaming Citywide Sanitation: CSE, New Delhi, April 4th, 2016

Lack of adequate sanitation is a global challenge

Is it possible to link sanitation with higher value chain biofuels and commodity chemicals?

Often limited by access to reliable energy inputs and chemicals

BILL& MELINDA GATES foundation

Fecal sludge to biodiesel

• Biodiesel

• Lipids

• Biodiesel process agnostic to 'waste' stream?

Faecal Sludge to Biodiesel Project

 $\overline{\mathbf{d}}$

Local project lab

Practical Issues Realistic Loading Conditions

Influent Loading Volumes

How does influent variability impact performance?

FS Characterization – Extreme Variability

	Average ± SD	
Total COD (mg/L)	22,951 ± 19,499	
Total VFA (mgCOD/L)	1,417 ± 1,074	
pН	8.01 ± 0.27	
Total Suspended Solids (mg/L)	15,663 ± 16,867	
Volatile Suspended Solids (mg/L)	12,617 ± 13,328	

Need to characterize beyond conventional parameters

Approach: Comprehensive Pilot Operations with Modelling Analysis

Pilot Scale Field Operations

Process Modeling

Process Modelling Approach

Purpose: Identify key characteristics of FS and FS fermentation and digestion (limit model adjustments)

Evaluated through calibration:

- COD fractionation (readily bio, unbiodegradable, etc.)
- Influent microbial concentrations
- Reaction rates (hydrolysis, acidogenesis, acetogenesis, and methanogenesis)
- Solids distribution (unmixed system)

Calibrated profiles for VFA and CH4

This model will be released and shared publicly

Practical issues

Overcoming mixing limitations and increasing process flexibility

• Pumps in R1, R2, R4 and R6

• Step-feeding

Maximizing lipid synthesis

Organic waste Anaerobic fermentation to produce volatile fatty acids (VFA)

Convert VFA to lipids Harvest and extract lipids Convert lipids to biodiesel

• Major fatty acids accumulated by *C. albidus* were predominantly palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2)

• Similar to soybean oil and jatropha oil, which are used as feedstock for biodiesel production in the US and the EU

Other options for resource recovery Biogas to chemicals

Article

pubs.acs.org/est

High-Rate, High-Yield Production of Methanol by Ammonia-Oxidizing Bacteria

Edris Taher and Kartik Chandran*

Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States

Supporting Information

ABSTRACT: The overall goal of this study was to develop an appropriate biological process for achieving autotrophic conversion of methane (CH₄) to methanol (CH₃OH). In this study, we employed ammonia-oxidizing bacteria (AOB) to selectively and partially oxidize CH₄ to CH₃OH. In fedbatch reactors using mixed nitrifying enrichment cultures from a continuous bioreactor, up to 59.89 ± 1.12 mg COD/L of CH₃OH was produced within an incubation time of 7 h, which is approximately ten times the yield obtained previously using pure cultures of *Nitrosomonas europaea*. The maximum specific rate of CH₄ to CH₃OH conversion obtained during this study was 0.82 mg CH₃OH COD/mg AOB biomass COD-d, which is 1.5 times the highest value reported with pure cultures. Notwithstanding these positive results, CH₄ oxidation to CH₃OH by AOB was inhibited by NH₃ (the primary substrate for the oxidative enzyme, ammonia monooxygenase, AMO) as well as the product, CH₃OH, itself. Further, oxidation of CH₄ to

 CH_3OH by AOB was also limited by reducing equivalents supply, which could be overcome by externally supplying hydroxylamine (NH₂OH) as an electron donor. Therefore, a potential optimum design for promoting CH_4 to CH_3OH oxidation by AOB could involve supplying NH₃ (needed to maintain AMO activity) uncoupled from the supply of NH₂OH and CH_4 . Partial oxidation of CH_4 -containing gases to CH_3OH by AOB represents an attractive platform for the conversion of a *gaseous* mixture to an *aqueous* compound, which could be used as a commodity chemical. Alternately, the nitrate and CH_3 OH thus produced could be channeled to a downstream anoxic zone in a biological nitrogen removal process to effect nitrate reduction to N₂, using an *internally* produced organic electron donor.

- Concomitant oxidation of CH₄ and CO₂ fixation
 - Digester gas contains CO₂
 - Foulant for chemical catalyst; but a food source for AOB
 - Moisture- not really an issue
- Prospect of combining C &N cycles

Benchmarking Data Collection Quality Assurance Project Plan and Data Quality Indicators

Data Quality Indicators

Quality Control Indicator	Sample Type	Frequency	Parameter	Acceptance criterion (%)
Precision	Check standard	1 per 10	RPD	± 25
	Field Duplicate	1 per 10	RPD	± 25
	Lab Duplicate	1 per 10	RPD	± 25
Accuracy	Known spike	1 per 20	% recovery	75 – 125
Completeness	All	Annual	% missing	To be determined
Performance audit	Known sample	≥4/Year	RPD	± 10

Data Quality indicators

ACCURACY

Attendance at QC training sessions is required for Volunteer Creek monitors. In the field, monitors use a Jones Wide-Range pH Kit, which covers a full range of expected pH values. During a recent training session, the monitors recorded the following results when testing a pH standard buffer solution of 7.0 units.

7.5	7.2	6.5	7.0
7.4	6.8	7.2	7.4
6.7	7.3	6.8	7.2

Accuracy = average value - true value

The average of these measurements is equal to 7.08 units. Since we know that the reference or "true" value is 7.0 units, the difference between the average pH value is off or biased by + 0.08units. This level of accuracy is satisfactory for the data quality objectives of the project.

Data Quality indicators

STANDARD DEVIATION

The Volunteer Creek Monitoring Project wants to determine the precision of its temperature assessment procedure. They have taken 4 replicate samples:

> Replicate 1 (X₁) = 21.1° C Replicate 2 (X₂) = 21.1° C Replicate 3 (X₃) = 20.5° C Replicate 4 (X₄) = 20.0° C

To determine the Standard Deviation (s), use the following formula:

where $x_i =$ measured value of the replicate, $\bar{\mathbf{x}} = \text{mean of}$ replicate measurements, n = number of replicates, $\Sigma =$ the sum of the calculations for each measurement value -- in this case, X₁ through X₄

First, figure out the mean, or average of the sample measurements. Mean = $(X_1 + X_2 + X_3 + X_4)$ \div 4. In this example, the mean is equal to 20.68° C.

Then, for each sample measurement $(X_1 \text{ through } X_4)$, calculate the next part of the formula. For X1 and X2, the calculation would look like this:

$$\frac{(21.1 - 20.68)^2}{4 - 1} = \frac{(-0.42)^2}{3} = \frac{0.1764}{3} = 0.0588$$

For X_3 the calculation would be 0.0108; and for X_4 it would be 0.1541

Finally, add together the calculations for each measurement and find the square root of the sum: 0.0588 + 0.0588 + 0.0108 +0.1541 = 0.2825. The square root of 0.2825 is 0.5315.

So, the standard deviation for temperature is 0.532 (rounded off).

RELATIVE STANDARD DEVIATION

If we use the same replicate measurements as above in the standard deviation example, we can determine the Relative Standard Deviation (RSD), or coefficient of variation, using the following formula:

$$RSD = \frac{s}{\overline{X}} \times 100$$
 where s =
standard
deviation and \bar{x}
= mean of
replicate
samples.
We know s = 0.5315 and that $\bar{x} = 20.68$. So,
the RSD = 2.57. This means that our

measurements deviate by about 2.57%.

So.

RELATIVE PERCENT DIFFERENCE

If the Volunteer Creek project had only two replicates (21.1° C and 20.5° C) they would use Relative Percent Difference (RPD) to determine precision.

$$RPD = \frac{(X_1 - X_2) \times 100}{(X_1 + X_2) \div 2}$$
 where $X_1 = \text{the larger of}$
the two values and $X_2 =$
the smaller of the two
values. In this example,
 $X_1 = 21.1^0$ and $X_2 = 20.5^0$.

RPD = $\frac{(21.1 - 20.5) \times 100}{(21.1 + 20.5) \div 2} = \frac{60.00}{20.8} = 2.88$
So, in this example, the RPD between our sample measurements is
2.88%.

Data Quality indicators

COMPLETENESS

The Volunteer Creek Monitoring project planned to collect 20 samples, but because of volunteer illness and a severe storm, only 17 samples were actually collected. Furthermore, of these, two samples were judged invalid because too much time elapsed between sample collection and lab analysis. Thus, of the 20 samples planned, only 15 were judged valid.

The following formula is used to determine Percent Completeness (%C).

$$C = \frac{v}{T} x 100$$

where v = the number of planned measurements judged valid and T = the total number of measurements.

In this example, v = 15 and T = 20. In this case, percent completeness would be 75 percent. Is this enough information to be useful?

Method detection limit

$$MDL = t_{(n-1,\alpha=0.01)} * S$$
(3)

Contact information

Kartik Chandran

Professor Director, Wastewater and Climate Change Program Director, Columbia University Biomolecular Environmental Sciences Email: kc2288@columbia.edu

Phone: (212) 854 9027

URL: <u>www.columbia.edu/~kc2288/</u>

Acknowledgements

The Bill & Melinda Gates foundation Water Environment Research Foundation Paul Busch Award National Science Foundation FS2BD project team

Overcoming mixing limitations and increasing process flexibility Step-feed anaerobic digestion

- Reactor configuration
 - V=6L
 - Sequencing batch
 - Step-feed
- Reactor operation
 - HRT: 2-8 d
 - $-T=37^{\circ}C$
 - $pH = 7 \pm 0.25$

1.6 1.4 1.2 Flow Rate (ml/min) 1 0.8 0.6 0.4 0.2 0 SFR 2 Day SBR 2 Day SFR 4 Day SBR 4 Day SFR 8 Day SBR 8 Day HRT HRT HRT HRT HRT HRT HRT

Methane Flow Rate

26

EFFECT OF NITROGEN CONCENTRATION

NH ₃ -N (mg/L)	Biomass (g/L)	μ_m (h-1)	Lipid content	$Y_{L/\Delta COD}$ (mg/g)
1300	1.335	0.0412	19.70%	44.10
260	1.133	0.0425	27.80%	52.35
130	0.998	0.0397	21.41%	32.12
52	1.105	0.0355	24.22%	40.80
26	0.935	0.023	28.81%	41.22

- Nitrogen limitation was imposed by testing five different initial nitrogen concentration with initial VFA at 5000 mg/L.
- The lipid content increased to 28.81% under nitrogen limiting conditions from 19.7%, when excess nitrogen was available.
- Increase in C/N ratio under nitrogen limiting conditions (NH₃-N \leq 260 mg/L) did not have an effect on the biomass yield or the intracellular lipid content of *C*.

Final Model Configuration

	Biowin Default	Final Model
Readily Biodegradable (g/g COD)	0.27	0.09
Soluble Unbiodegradable (g/g COD)	0.08	0.09
Particulate Unbiodegradable (g/g COD)	0.08	0.47
Ordinary Heterotrophic Organisms (g/g COD)	0.01	0.05
Acetoclastic Methanogens (g/g COD)	0.00001	0.015
Acetoclastic Methanogenesis Rate (1/day)	0.3	0.1
CO_2 Yield (moles CO_2 /moles acetate)	0.7	1.2

Operation and Process Analysis of Faecal Sludge Anaerobic Fermentation and Digestion

Justin Shih

Ato Fanyin-Martin, Edris Taher, Kartik Chandran

Columbia University Chandran Lab USA

Conclusions

- HRT affects VFA production and methane flowrate.
- VFA was highest at 8 day HRT
- They were however similar across all HRT's in the SBR but differed across HRTs in the SFR.
- Methane flowrate increased with an increase in HRT
- VFA Speciation follows a similar trend across HRT's with differences in yield.
- SFR and SBR are similar in a lot of respect across the HRT's

Results and Discussion

- Hypothesis
 - HRT
 - Operational Mode
- **Results:**
 - Liq phase
 - Hydrolysis, VFA speciation and VFA yield
 - Gas phase
 - Flow rate

Settling Distribution in Reactors

Need to normalize for solids distribution to evaluate gas production efficiency.

Conversion of fecal sludge into chemicals

Importance of Pilot Scale Research

- Reflect true variability of FS from vacuum trucks
- More accurate field operations (unmixed reactors, flexible loading volumes)
- Baseline data for design guidelines
 - Minimize design retention time -> lower capital cost
 - Optimize for methane production
 - Optimize for additional resources (VFA)

Approach: Comprehensive Pilot Operations with Modelling Analysis

Pilot Scale Field Operations

Process Modeling

- 5 months start up, 5 months full operation
- Two trains of six, 10m³ reactors
- 2-4 day HRT per reactor
- Measured parameters:
 - COD, VFA, TSS, VSS, pH, alkalinity, N H3-N
- Gas Analysis
 - CH₄, CO₂, O₂, H₂S

- Fermentation is more advantageous than just anaerobic digestion
- Fermentation can be incorporated into existing digestion processes

Fermentation as a platform

• VFA for N and P removal

- Using different types of biomass
- Including food waste
- Chemicals
 - solvents, pharmaceuticals
- Biofuels
- Methanogenesis still can be conducted downstream
 - And probably needs to be conducted

Dual-Phase Digestion and Fermentation of Sewage

PDS fermentation and storage at 26th Ward WPCP in New York City, 2002

- Fermentation of PDS to produce fatty acids
 - NYC spends about \$15 million annually on synthetic chemicals
 - Also led to improved wastewater treatment efficiencies

Overview of our process

Organic waste Anaerobic fermentation to produce volatile fatty acids (VFA)

Convert VFA to lipids Harvest and extract lipids Convert lipids to biodiesel

Dompoase Site Plan

Schematic – Side View

• = Approximate location of sample ports – 2 each per tank on opposite sides as shown in detail

Plant schematic

Plant schematic

More photos for scale as well as to document that repeated visits to the site revealed no compaction being performed.

Some practical issues- settling

Note that the settling of the dirt fill has pulled the piping down and cracked the elbow. At the time of this photo, the settling was about six inches – it has continued to settle.

Source 1- Private septage

Source 2- Public septage

Source 3- Pit Latrines

Source 4- Ponds

Characteristics of fecal sludge

Continuous monitoring of composite influent to reactors

Step Feed Anaerobic Fermentation- A Novel Alternate for Faecal Sludge (FS) Processing

Ato Fanyin – Martin

KNUST, Ghana

Earth and Environmental Engineering, Columbia University Contact information: Prof. Kartik Chandran E-mail: kc2288@columbia.edu

Where we Stand today

What Do we Do?

Resource recovery

Treatment

FS2BD Pilot Facility

Processing of 5000L of FS a day with the aim of optimising VFAs and methane

Process Optimization

- Pilot Plant Bottleneck
 - High VFA in the Influent
 - High biogas production in the front end digesters
 - Mixing
- Solution and Limitation
 - Step feeding
 - Lab limitation
 - Substitution of faecal sludge
 - Food waste

What is Faecal Sludge?

Faecal sludge (FS) is sludge from on-site sanitation facilities (septic tanks, pit latrines, etc.) collected and transported by truck

- 2.7 billion served by on-site sanitation
- Often discharged untreated to waterbodies
- Impacts to public health and water

What is Faecal Sludge?

FS is principally different from sewage sludge, but still relies on sewage sludge research.

- Mainly excreta, less kitchen waste contributions
- Extended storage time (weeks, months, ye ars)
- Variable toilet systems (flush and

Possible flowsheet for C, N and P recovery

 How to link recovery of energy or chemical resources with environmental process objectives

Sewage sludge to biodiesel

- Using the fat content of biosolids
- Using MeOH for fuel production instead of Nremoval

Microbial conversion of VFA to lipids

Faecal Sludge and other organic waste

Anaerobic Digestion to produce Volatile Fatty Acids Conversion of VFA to lipids using Cryptococcus albidus.

Harvest biomass and lipid extraction Convert lipids to produce biodiesel

