

Natural Water Systems and Treatment Technologies to cope with Water Shortages in urbanised Areas in India

EC Grant Agreement no: 308336 DST Sanction Order: DST/IMRCD/NaWaTech/ 2012/(G)

SEVENTH FRAMEWORK PROGRAMME EU -India cooperation in water technology and management

A project co-financed by the Department of Science and Technology of the Government of India and the European Commission

www.nawatech.net

Outlook

Introduction to NaWaTech

Pawan K. Labhasetwar + Mirko Haenel

NaWaTech Video

Updated information on the 6 implementation sites

Dayanand Panse, Girish R. Pophali, Sayali Joshi

Safety and O&M Planning

Guenter Langergraber

NaWaKit + Business development + trainings

Martin Wafler

Community of Practice

Pranav Nagarnaik

- Panel with project implementation partners
- Summary + post-project activities
 Pawan K. Labhasetwar

Introduction to NaWaTech

Overall objective

To enhance natural and technical water treatment systems such as constructed wetlands, soil aquifer treatment and bank filtration in order to develop a technically cost-efficient and robust water management system to cope sustainably with water shortages in urban areas of India.

Introduction to NaWaTech

NaWaTech concept

NaWaTech Concept is based on optimised use of different urban water flows by means of multi-barrier approach

Workplan

Ensure the smooth running of the projects; Lead: TTZ (Europe); NEERI (India)

Preparatory work 1

NaWaTech Compendium

- 7 Chapters
- 23 Technology Factsheets
 - Water Sources (3)
 - Water Use (1)
 - Wastewater Treatment (15)
 - Recharge / Reuse (4)
- Available online at <u>http://nawatech.net/</u>

Preparatory work 2

Research in Europe

- Pilot-scale experiments with CWs at UPC
- Feasibility study for Short Crop Rotation plantation (ttz)
- Development of the concept for NaWaTech Safety & O&M Planning (BOKU)

Research in India

Research questions and plans developed specifically for each implementation sites

Outlook

Introduction to NaWaTech

Pawan K. Labhasetwar + Mirko Haenel

NaWaTech Video

Updated information on the 6 implementation sites

Dayanand Panse, Girish R. Pophali, Sayali Joshi

Safety and O&M Planning

Guenter Langergraber

NaWaKit + Business development + trainings

Martin Wafler

Community of Practice

Pranav Nagarnaik

- Panel with project implementation partners
- Summary + post-project activities

Pawan K. Labhasetwar

Outlook

Introduction to NaWaTech

Pawan K. Labhasetwar + Mirko Haenel

- NaWaTech Video
- Updated information on the 6 implementation sites

Dayanand Panse, Girish R. Pophali, Sayali Joshi

Safety and O&M Planning

Guenter Langergraber

NaWaKit + Business development + trainings

Martin Wafler

Community of Practice

Pranav Nagarnaik

- Panel with project implementation partners
- Summary + post-project activities

Pawan K. Labhasetwar

Implementation sites

Implementation of NaWaTech treatment system at 6 sites (5000 p.e.)

Staff Colony Ordnance Factory Estate, Ambajhari Capacity: 100 m³/day (1000 p.e.)

NAGPUR

Common Recreation Areas / Gardens

NIT Garden at Dayanand Park Capacity: 100 m³/day (1000 p.e.)

High Rise Residential Complex Amnora Park Apartments Capacity: 40 m³/day (400 p.e.)

PUNE

Nullah / Open Sewer Indradhanushva Environ. & Citizenship Center, Dattavadi Capacity: 40 m³/day (400 p.e.)

College / University Housing Facility Boys Hostel, College of Engineering Capacity: 180 m³/day (2000 p.e.)

> + Office building MJP office Pilot demonstration

Compact Technical Modules Implemented – Sequential Batch Reactor (SBR) and Membrane Bio Reactor (MBR)

Residential Towers supplying wastewater to SBR-MBR

Location of compact technical modules SBR-MBR

Sr. No.	Parameter	Unit	Inlet	Outlet (MBR)	Outlet (SBR)
1.	рН	-	7.1	7.5	7.4
3.	Biological Oxygen Demand (BOD ₃) at 27 ^o C	mg/l	149	11	21
4.	Chemical Oxygen Demand (COD)	mg/l	368	43	33
5.	Total Suspended Solids (TSS)	mg/l	156	28	38
6.	Sulphates as SO ₄	mg/l	14.6	4.6	12.3
7.	Phosphates as PO ₄	mg/l	2.6	0.28	0.60
8.	Nitrates as NO ₃	mg/l	1.3	0.6	1.8
9.	Ammonia as NH ₃	mg/l	18.2	0.8	5.6
10.	Total Kjeldahl Nitrogen as N	mg/l	26.1	2.2	4.1
12.	Dissolved Oxygen	mg/l	0	3.9	3.0
13.	Coliform MPN	/100 ml	>1600	27	

DTS 100 (under construction)

DTS 100 (commissioned)

Vertical Flow Constructed Wetlands (VFCW 1 and 2)

Sr. No.	Parameter	Unit	Anaerobic Treatment System for Black Water (40 m³/day) – primary treatment only		Vertical Flow Wetland for Grey Water (40 m ³ /day)		Anaerobic + Constructed Wetland for Sewage (100 m ³ /day)	
1	nH	_	6.6	6.8	6.4	73	66	7 7
1.		-	0.0	0.0	0.4	1.3	0.0	1.1
2.	Biological Oxygen Demand (BOD ₃) at 27 ^o C	mg/l	248	69	48	6	168	8
3.	Chemical Oxygen Demand (COD)	mg/l	617	167	111	21	420	28
4.	Total Suspended Solids (TSS)	mg/l	186	60	56	12	220	14
5.	Dissolved Oxygen (DO)	Mg/I	0	0	3.4	6.4	1.4	5.3
6.	Ammonia as NH ₃	mg/l	55.9	41.7	53.6	< 0.12	149.4	6.8
7.	Phosphates as PO ₄	mg/l	23.6	22.2	3.0	< 0.6	22.9	1.2
8.	Total Kjeldahl Nitrogen (as N)	mg/l	65.6	57.0	46.3	2.1	134.8	6.1
9.	Total Oil & Grease	mg/l	46.4	8.9	8.4	< 5	21.6	< 5
10.	Total Dissolved Solids	mg/l	432	538	172	276	356	516
11.	Coliform MPN	/100 ml	> 1600	> 1600	> 1600	920	> 1600	> 1600
12.	E. coli	CFU/100 ml	> 1600	> 1600	> 1600	400	> 1600	500

3 MJP Office

Vertical garden for treating greywater from an office building

3 MJP Office

Satisfactory treatment performance

- filter material: cocopeat
- approx. 1 m² of wall per person needed for restricted irrigation reuse; complete disinfection is not guaranteed for unrestricted reuse

Economically feasible

 payback time: about 10-12 years

Short communication accepted in *Journal of Water, Sanitation and Hygiene for Development*

Ambil stream contaminated with sewage till confluence with Mutha River.

Water from Ambil stream is treated with Eco-filtration Bank (EFB) system for use in the museum gardens.

Capacity: ca. 40 m³/d

Eco-filtration Bank (EFB) comprises

- Intake well,
- 2 Soil Scape Filters
- Treated water pond

- About 40 CMD water available for landscaping and toilet flushing purposes
- ✓ Enhances aesthetical view of the gardening
- Role model to show reuse of wastewater flowing through city's drains / streams

5 Ordnance Factory Estate, Ambajhari

Schematics of Treatment System for Domestic Sewage Management (100 m³/day)

First results

	(5.5 – 9	.0)
0 [<20]	(250)	mg/L
0 [< 5]	(30)	mg/L
0 [<10]	(100)	mg/L
[< 10]	(100)	mg/L
[< 1]	(5)	mg/L
0	(2100)	mg/L
– 40 (<5)	(10)	mg/L
	0 [<20] 0 [< 5] 0 [<10] [< 10] [< 1] 0 - 40 (<5)	(5.5 - 9 0 [<20] (250) 0 [< 5] (30) 0 [<10] (100) [< 10] (100) [< 1] (5) 0 (2100) - 40 (<5) (10)

Values in [] indicate achievable effluent quality

5 Ordnance Factory Estate, Ambajhari

SHORT ROTATION PLANTATION (SRP)

Selection of most suitable fast growing tree species:

Melia dubia and Bambusa bambos.

Design of test site:

- about 1500 m² for each tree species
- Irrigated with treated wastewater

6 NIT Dayanand Park

Salient Features

- 1500 2000 park users per day
- Water Requirement 100 120 m³/day for maintaining the garden
- Currently using water from near by open drain and ground water
- Proposed Treatment Capacity: 100 m³/day
- Treated water proposed to used for gardening
- **Treatment System**
- Two stage anaerobic system followed by
- Combination of HF & VF CWs
- Integration of technical design with landscape scenarios

6 NIT Dayanand Park

implemented in the treatment scheme

Wastewater Ch	Expected Concentration s		
рН	7.0 – 7.5	7.0 – 7.2	
BOD	110 – 150	<10	
COD	280 – 300	< 30	
TSS	80 – 200	<10	
Oil & Grease	25 – 35	<10	
TKN	14 – 25	<10	
Phosphate	2-6	<1	

6 NIT Dayanand Park

Outlook

Introduction to NaWaTech

Pawan K. Labhasetwar + Mirko Haenel

- NaWaTech Video
- Updated information on the 6 implementation sites

Dayanand Panse, Girish R. Pophali, Sayali Joshi

Safety and O&M Planning

Guenter Langergraber

NaWaKit + Business development + trainings

Martin Wafler

Community of Practice

Pranav Nagarnaik

- Panel with project implementation partners
- Summary + post-project activities

Pawan K. Labhasetwar

NaWaTech Safety and O&M Planning

Summary

- Sanitation systems only have the expected benefits to human health and environment if they work → Operation and maintenance required
- NaWaTech Safety and O&M Planning approach to support sustainable long-term operation of sanitation systems
 - Risk-based approach adapted from WHO Water and Sanitation Safety Planning
 - Basis to develop O&M schemes and materials
Safety planning approach

Background

- WHO Water Safety Planning approach
 - WHO Guidelines for Drinking Water (2004)
 - Health of consumers in the center
 - To ensure this, proper O&M of water supply system is needed

Safety planning approach

with courtesy of Kate Medlicott (WHO)

Safety planning approach

Background

- WHO Water Safety Planning approach
 - WHO Guidelines for Drinking Water (2004)
 - Health of consumers in the center
 - To ensure this, proper O&M of water supply system is needed
- WHO Sanitation Safety Planning approach
 - WHO Guidelines for the safe use of wastewater, excreta and greywater (2006)
 - Concept note published 2010, Manual published 2015
 - Sanitation service chain more complex (more stakeholders, different products and uses, work safety, etc.)

Safety planning approach

SANITATION SAFETY PLANNING

MANUAL FOR SAFE USE AND DISPOSAL OF WASTEWATER, GREYWATER AND EXCRETA

Ħ

F

- NaWaTech pilots (up to 2000 PE served, only WWTP) are small compared to the sanitation system of whole city (Pune: 5 Mio people) \rightarrow WHO approach not applicable
- Assuming a well designed system as a starting point that benefits to human health and environment \rightarrow proper O&M guarantees that benefits to human health and environment will be achieved
- Use Safety Planning approach as basis to develop O&M schemes \rightarrow support guaranteeing a long-term operation of the implemented systems NaWaTech 42

5 Steps

Stakeholder mapping, definition of system boundaries & system description

Identification of hazards and hazardous events → risk assessment and prioritization

Definition of risk prevention and risk reduction measures (control measures)

Monitoring measures

Troubleshooting and communication plan

Hazards: failure modes of treatment units and supporting units" (e.g. pumps, monitoring devices, etc.)

Hazardous events: circumstances favoring these malfunctions or failure modes

Risk Assessment

Score	Probability (P) (of the hazardous event)	Detectability (D) (of the hazard)	Severity (S) (of the consequence of the hazard)
1	< once in 5 year	Immediate (e.g. visual inspection)	Will not result in major system degradation and will not produce system functional damage
2	< once a month to once in 1 year	Stepwise (e.g. sampling required)	Will degrade system performance but can be counteracted or controlled without major damage
3	> once a month	No detection in normal operation; problem analysis is stepwise and complex	Will (severely) degrade system performance by substantial damage (component failure), interrupt system feeding, requiring immediate corrective action for system survival.

What could be critical points for your O&M management?

"Risk" = Probability x Severity x Detectability

A risk is considered critical if R > 7 OR P = 3 OR S = 3

Outcomes

Stakeholder workshops

Responsibilities for O&M Who (operator/supervisor) is responsible for what?

Outcomes

Results from hazards and risk assessment

Treatment Line	Implemented system	# components	# hazards	# critical hazards	Hazards with R≥7	Hazards with P=3	Hazards with S=3
Amanora 1	SBR	11	88	51	27	3	21
Amanora 2	MBR	10	87	58	22	3	33
COEP 1	Anaerobic pre- treatment + VF CWs (domestic wastewater)	11	83	38	19	6	13
COEP 2	VF CW (greywater)	7	65	35	18	4	13
OFAJ 1	Anaerobic pre- treatment + vertical up-flow CW	16	106	47	25	0	22
OFAJ 2	French reed bed	8	66	24	12	0	12

Outcomes

Operator-friendly O&M materials

e.g. checklists and workplans for operator and supervisors

Activity- and Timetable WEEKLY ACTIVITIES							
Target Date	Task Nr.	Activity	Schedule	Executing Person	Completed (Day/Time)	Signature Executing Person	
Checking the t	ool room						
	W1	Checking the completeness of the tools in the tool room	Every Week				
Checking of al	taps at the	e consumers for leakages and damages					
	W2	Checking of tap at "Public water station Bukara"	Every Week				
	W3	Checking of tap at "Public water station Mikamo"	Every Week				Γ
	W4	Checking of taps at the Health Center	Every Week				Γ
	WS	Checking of taps at Primary School 1	Every Week				
	WB	Checking of taps at Primary School 2	Every Week				Γ
	W7	Checking of taps at the Parish	Every Week				Γ
	WE	Checking of taps at Future for Kids	Every Week				Γ
Checking the t	ool room						
	W1	Checking the completeness of the tools in the tool more	Every Week				Γ
							-

Projekt Wendling

Arbeitsprotokoll

Datum 18-91- 2841	Uhrzeit ven 19:15 bis 20:00
Person(an) vor Ort: LA1004.7-	escudes, Sendor WORLSCE

Tätigkaiten		2.72.57
3. Anlageninspektion	Xe.	O min
2. Photodokumentation	×6.	Onein
3. Probenahme (für mikrobiologischen Anelysen)	دز 0	
4. Probenshme (für chemischen Analysen)		a nein
5. Analyse vor Dri (pH, T, OZ, LF, ORP)	Cale	O nein
6. Analyse vor Ort mit Dr. Lange LASA 50 Photometer,	915	O nein
7. Wartung der Aufbereibungseinheiten (z.B. Filterrückspülung)	0 ja	a pela
8. Wartung der Messgeräte	يز 0	Aben
9. Anlageuribau (bzw. Upgrade)		© nein
10. Änderungen der Aufbernitungs- oder Messeinstellungen		Chein
11.Digitale Messdaten speichern (Online Geräta);		Onein

1. Antageins pelotion				Uhrzeit von	bk
Luftanneicherung		O Problem:			
Nortfikationsfilter F1(1)	Sak	O Problem:	1.		1.04/2-
Nitrifikationsiitter F1(2)	3861	O Problem:	<u> </u>		Enlight
Schnellfilter #2	Jack	O Problem:	Gal	and the Bar	Coul fulling
UV-C)8Gk	O Problem:			
Online Messgeräte	Kok	O Problem:			
Benondere Vorkommnisse: non Osolden, weit Installatten ven Elattläfter Mars, P	Stady defini Salana 2. taok	sigletter so geochemist Ser Ablent Maritet nich	sue <u>and</u> Nobel sue ng else	Balatin	Hating

Outcomes

Summary

- Design adaptations based on hazard identification in discussions with designers
- Fostering O&M roles and responsibilities in stakeholder workshops
- Prioritization of critical control and monitoring measures to be integrated in O&M work plans for operators and supervisors / skilled and unskilled workers

Additionally,

- Identify topics for trainings and system understanding
- "User-friendly" tools for O&M and prioritised activities
- Support budgeting for O&M

Summary

- Sanitation systems only have the expected benefits to human health and environment if they work → Operation and maintenance required
- NaWaTech Safety and O&M Planning approach to support sustainable long-term operation of sanitation systems
 - Risk-based approach adapted from WHO Water and Sanitation Safety Planning
 - Basis to develop O&M schemes and materials

Outlook

Introduction to NaWaTech

Pawan K. Labhasetwar + Mirko Haenel

- NaWaTech Video
- Updated information on the 6 implementation sites

Dayanand Panse, Girish R. Pophali, Sayali Joshi

Safety and O&M Planning

Guenter Langergraber

NaWaKit + Business development + Trainings

Martin Wafler

Community of Practice

Pranav Nagarnaik

- Panel with project implementation partners
- Summary + post-project activities

Pawan K. Labhasetwar

NaWaKit – Introduction

Online knowledge platform for water practitioners in India <u>http://www.sswm.info/category/step-nawatech/introduction</u>

NaWaTech - Natural Water Systems and Treatment Technologies to Cope with Water Shortages in Urbanised Areas in India

NaWaKit - Module 1: NaWaTech Basics

- Introduction
- 23 technology factsheets
- 5 case studies

AMANORA Park Town - Pune

Dayanand Park - Nagpur

111444

Indradhanushya Museum - Pune

NaWaTech - Natural Water Systems and Treatment Technologies to Cope with Water Shortages in Urbanised Areas in India

NaWaKit - Module 2: NaWaTech Business Development

Tools for ...

- **Development of Business Models**
- **Business plan development**
- Founding and managing a business

NaWaTech - Natural Water Systems and Treatment Technologies to Cope with Water Shortages in Urbanised Areas in India

Business Model Canvas

NaWaKit - Module 3: A Guide for Successful NaWaTech Projects

- Technology Selection and Design
- Implementation of NaWaTech Projects
- Safety and O&M Management

NaWaTech - Natural Water Systems and Treatment Technologies to Cope with Water Shortages in Urbanised Areas in India

NaWaTech Training of Entrepreneurs and SMEs

- 9th to 18th April 2015, Pune
- > 17th to 20th August 2015, Nagpur

Group picture - Pune

Group picture - Nagpur

NaWaTech - Natural Water Systems and Treatment Technologies to Cope with Water Shortages in Urbanised Areas in India

NaWaTech Training of Entrepreneurs and SMEs

Outlook

Introduction to NaWaTech

Pawan K. Labhasetwar + Mirko Haenel

- NaWaTech Video
- Updated information on the 6 implementation sites

Dayanand Panse, Girish R. Pophali, Sayali Joshi

Safety and O&M Planning

Guenter Langergraber

NaWaKit + Business development + Trainings

Martin Wafler

Community of Practice

Pranav Nagarnaik

- Panel with project implementation partners
- Summary + post-project activities

Pawan K. Labhasetwar

What is meant by CoP ?

- A collaborative network which shares a domain.
- All members engaged in the furtherance of a common goal
- Driven by the willing participation of their members.
- Engaged in sharing knowledge, building capacity, developing expertise, and solving problems.
- Timeline max. 5 years

aWaTech

NaWaTech CoP – Objectives

- To promote innovation and entrepreneurship,
- To build an international network of stakeholders and learn from each other (face-to-face and virtually) and establish long term co-operations.
- To facilitate discussions, to support and to provide feedbacks and to strengthen and co-ordinate the dissemination activities of the project
- To promote the cause of natural water treatment systems as alternatives to conventional water management systems and share NaWaTech Project experience
- To create general awareness of the urban water cycle, including aspects such as effectiveness of the different solutions and economics, amongst others.

Membership in the NaWaTech CoP is voluntary

Nagpur Chapter

- CoP meetings / workshops / interactions
 - Stakeholders
 - Central Railway, Ajni
 - Dayanand Park, Jaripatka, Nagpur
 - Building Association
 - Decision Makers
 - CPCB & State PCBs
 - MJP
 - Professionals / Practitioners
 - MPCB Nagpur Office
 - IWWA, Nagpur
 - Exhibitions
 - Knowledge Expo, New Delhi

Pune Chapter

- CoP meetings / workshops / interactions
 - Academic Institutions
 - 150 registered students as CoP peripheral members
 - Collaborated with 5 colleges for long-term COP activities
 - Stakeholders
 - COEP Pune
 - Amanora Park Town
 - Building Association
 - Exhibitions
 - Lions Environment Expo
 - Sanitation Technology Exhibition
 - Rotary Service Expo
 - Professionals / Practitioners
 - SME Breading

Future activities

- Engaging the collaborative institutes and organizations to carry forward the CoP activities for long term
- Involving college students/professionals in various CoP initiatives creating internship/research opportunities for them
- Continuing the CoP activities through NaWaTech Web Forums, Social Sites by engaging peripheral members
- Organizing the site visits for interested institutes or organizations (Government or Privates) for knowledge sharing

Outlook

Introduction to NaWaTech

Pawan K. Labhasetwar + Mirko Haenel

- NaWaTech Video
- Updated information on the 6 implementation sites

Dayanand Panse, Girish R. Pophali, Sayali Joshi

Safety and O&M Planning

Guenter Langergraber

NaWaKit + Business development + Trainings

Martin Wafler

Community of Practice

Pranav Nagarnaik

- Panel with project implementation partners
- Summary + post-project activities

Pawan K. Labhasetwar

Panel discussion

with implementation partners

- Mr. Mangesh Dighe (Pune Municipal Cooperation)
- Prof. B.G. Birajdar (COEP)
- Mr. J.K. Bhosale (Amanora Park Town)

Moderated by

- Pawan K. Labhasetwar
- Mirko Haenel

NaWaTech - Natural Water Systems and Treatment Technologies to Cope with Water Shortages in Urbanised Areas in India

Outlook

Introduction to NaWaTech

Pawan K. Labhasetwar + Mirko Haenel

- NaWaTech Video
- Updated information on the 6 implementation sites

Dayanand Panse, Girish R. Pophali, Sayali Joshi

Safety and O&M Planning

Guenter Langergraber

NaWaKit + Business development + Trainings

Martin Wafler

Community of Practice

Pranav Nagarnaik

- Panel with project implementation partners
- Summary + post-project activities

Pawan K. Labhasetwar

Summary + post-project activities

What has been achieved?

- Scientific publications:
 - Journal papers: 3 published / 1 accepted / 1 submitted
 - Special Issue of *Sustainable Sanitation Practice* journal
 - with 14 papers on all aspects of the NaWaTech project
 - Open access, on-line at <u>http://www.ecosan.at/ssp</u>
 - Full papers in conference proceedings: 5
 - Conference presentations: 13 Oral + 4 Poster
- NaWaKit all results published at SSWM Toolbox
- Release of NaWaTech video

Practice Construction Construct

Sustainable Sanitation

Summary + post-project activities

What has been achieved?

- Open access publications
 - Video
 - NaWaKit knowledge platform
 - Compendium of Technologies
 - 2 recommendation papers
 - Special Issue of *Sustainable Sanitation Practice* journal
 - Publication of Case studies in the SuSanA platform

Summary + post-project activities

What has been achieved?

- 7 Project meetings (2 EU / 5 IN)
- 5 International workshops /conferences (2 EU / 3 IN)
- 2 Trainings (- EU / 2 IN) 55 entrepreneurs trained
- MSc theses: 11 completed (7 EU /3 IN) / 3 on-going (- EU /3 IN)
- PhD theses: 1 completed (1 EU /- IN) / 3 on-going (1 EU /2 IN)
- **Student exchange:** Involved students:
 - 9 students from EU to IN (1 PhD / 8 MSc) 91 weeks / 640 days
 - 5 students from IN to EU (2 PhD / 3 MSc) 51 weeks / 360 days

Summary + post-project activities

- Replication of NaWaTech systems
 - E.g. OFAJ treatment scheme replications in Nagpur
 - MOIL Housing Complex, Gumgaon (200 m³/day)
 - Housing complex in Hingnghat (150 m³/day)
 - Villages Patansawangi and Navegaon Sadhu through Zilla
 Parishad (200 and 50 m³/day, respectively)
- Convert NaWaTech COPs into IWWA Directorate
- Transferring NaWaTech design specifications into agencies for implementation of decentralised systems (MJP)
- Design specifications to central agencies (CPHEEO)

Example: Replication of OFAJ treatment scheme for MOIL Housing Complex, Gumgaon

- **Total Number of houses: 240**
- **Divided in three clusters:**
 - Cluster I: 150 m³/d
 - Cluster II: 30 m³/d
 - Cluster III: 20 m³/d
- Treatment system:
- Oil & grease traps followed by Combination of Anaerobic System and HF wetlands
 - Material of construction: brick work, PCC, RCC & HDPE for impervious lining

Example: Replication of OFAJ treatment scheme for MOIL Housing Complex, Gumgaon

Many thanks for your attention

Questions?

NaWaTech Consortium

NaWaTech - Natural Water Systems and Treatment Technologies to Cope with Water Shortages in Urbanised Areas in India