

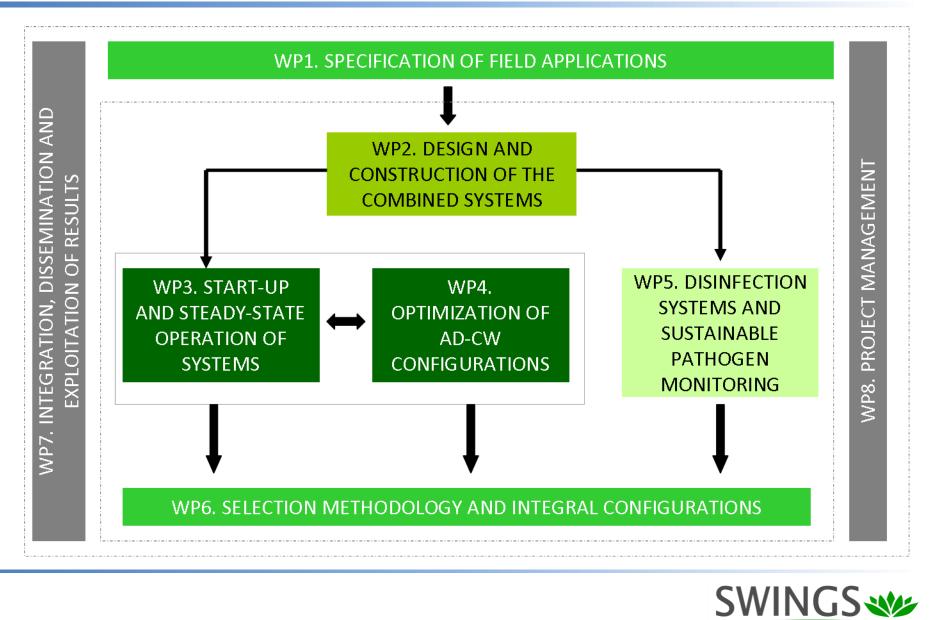
SAFEGUARDING WATER RESOURCES IN INDIA WITH GREEN AND SUSTAINABLE TECHNOLOGIES

www.swingsproject.com

ISWATS Conference, Pune (India), 22th April 2016

- 1. Aim and Objectives
- 2. SWINGS consortium
- 3. Work packages
- 4. Project execution: Pilot plants implementation, start up and operation, monitoring, decision support system.
- 5. Technological innovations (at AMU, Kalyani, IGNTU)
- 6. Outcomes, achievements and future prospects

To develop / deploy optimized schemes for low cost effective wastewater management (municipal ww) in order to make full use of water resources (irrigation, cleaning, public and/or private demands, aquaculture farm feed) and to minimise energy demands as a treatment option for rural and energy scarce towns in India.


Consortium

Work packages

Gantt Chart

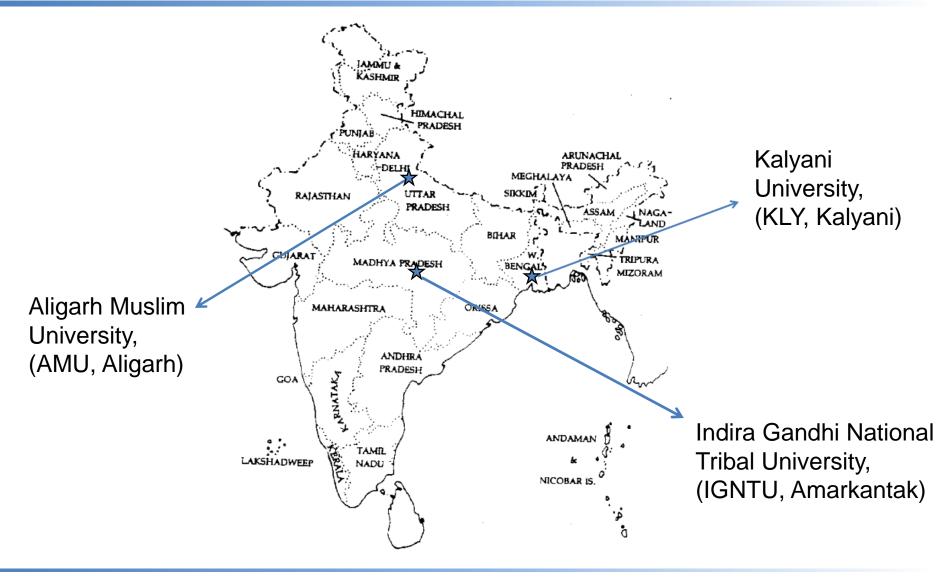
					1st ye	ear									2nd yea	ır								3rd	l year				
SWINGS Gantt	1 2	2 3	4	5	6	7	3 9	10	11	12	13 1	14 15	16	17	18 19	9 20	21	22	23 24	4 25	26	27	28 2	9 30	31	32	33 34	35	36
WP1 SPECIFICATION OF FIELD APPLICATIONS																													
T1.1 Stakeholder forum	L	4																											
T1.2 Definition of combined system cases	Ν	11																											
WP2 DESIGN AND CONSTRUCTION OF THE COMBINED SYSTEMS					M 2																								
T2.1 Configuration designs																													
T2.2 System construction																													
T2.3 Instalation and checking test																													
WP3 START-UP AND STEADY-STATE OPERATION OF SYSTEMS																													
T3.1 Adjustament of different systems																													
T3.2 Starting operation of combined units																													
T3.3 Start-up of the configurations										М 3.	1																		
T3.4 Steady-state operation at design hydraulic and organic load													M	3.2															
WP4 OPTIMIZATION OF AD-CW CONFIGURATIONS																													
T4.1 Organic overload																													
T4.2 Hydraulic overload																								M	4.1				
T4.3 Depth and O2 concentration effect on constructed wetlands																												M 4	
T4.4 Monitoring of GHG and heavy metals on constructed wetland																												M 4	.3
WP5 DISINFECTION SYSTEMS AND SUSTAINABLE PATHOGEN MONITO																													
T5.1 Filtration and lagooning methods																	M	5.1											
T5.2 Solar methods																								N	1 5.2				<u> </u>
T5.3 Integration and validation of an sustainable pathogen monitoring technique	ue																											M 5	.3
WP6 SELECTION METHODOLOGY AND INTEGRAL CONFIGURATION																													
T6.1 Identification, classification and fuzzy translation of indicators																													
T6.2 Indicator weight and development of decision tables																													
T6.3 Implementation and calibration																				N	1 6.1								
T6.4 Validation through integral anaerobic, CW and disinfection configurations	8																												
WP7 INTEGRATION, DISSEMINATION AND EXPLOITATION OF RESULTS																													
T7.1 Integration of results																													
T7.2 Results dissemination																													
T7.3 Results exploitation																													
WP8 PROJECT MANAGEMENT																													
T8.1 Project coordination																													
T8.2 Technical and risk management of the project																													
T8.3 Strategic management of the project																													

Workpackage time Task time

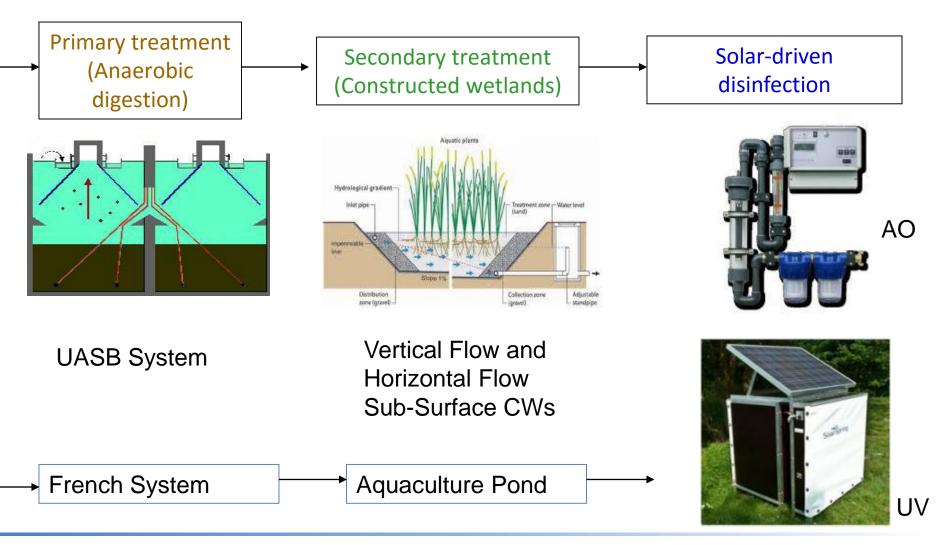
1.Documentation of all of the pilot trials (5 Nos.) at different locations in India (D1.1, D2.1, D2.2, D2.3).

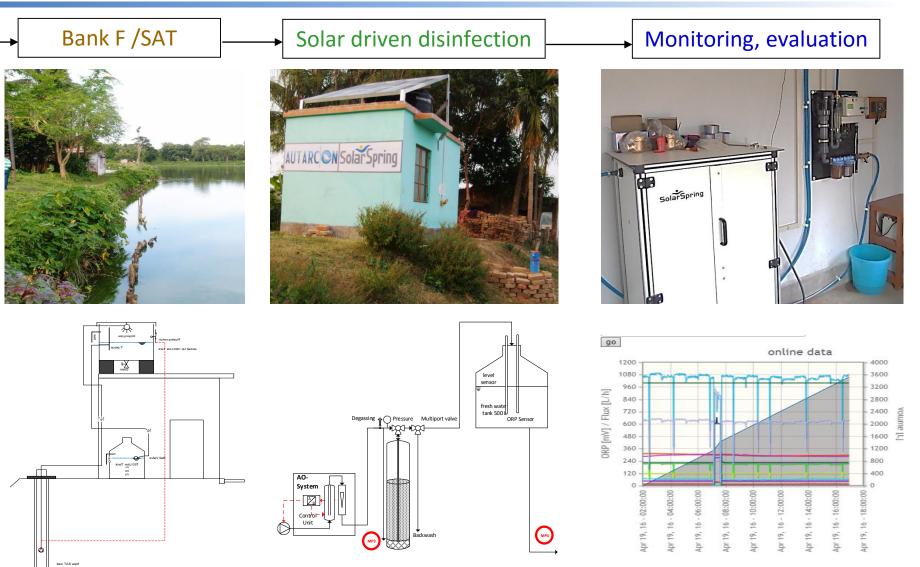
2.Documentation on integrated, optimized, and techno-economical aspects of the treatment methods/combinations (D2.4, D2.5, D3.3, D4.5, D7.3).

3.Documentation on overall performance evaluation by piloting proven technologies for solving water challenges and safe-guarding water resources (Reuse aspects) (D3.4, D4.5, D5.1, D5.2, D7.5).


4.Development of DSS and guidelines for technology application and design, and operating manual (D6.2, D6.3, D6.4).

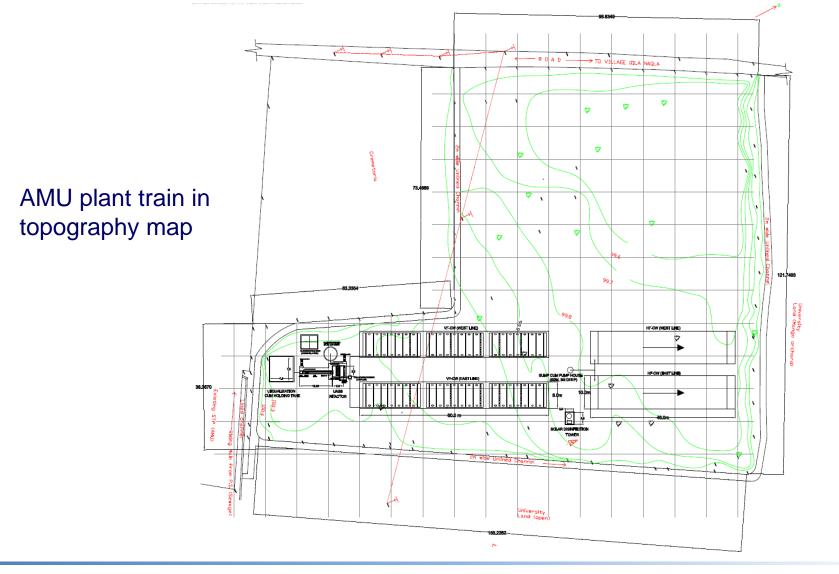
5.Integration of Results for exploitation and dissemination through Websites, Conferences, Workshops and peer reviewed publications (D7.1, D7.2, D7.4).


Location of pilot plants

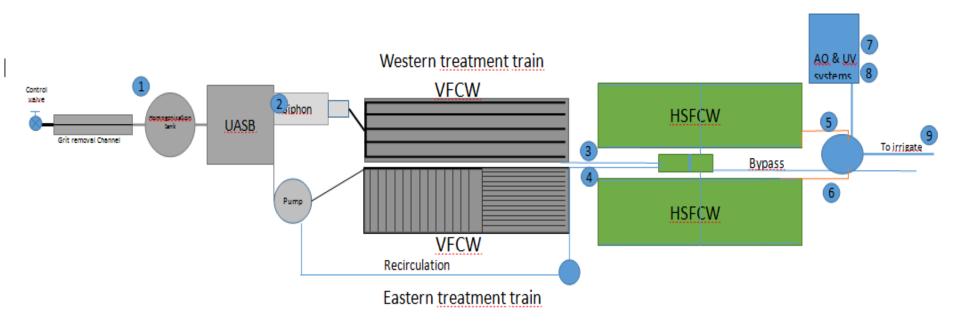


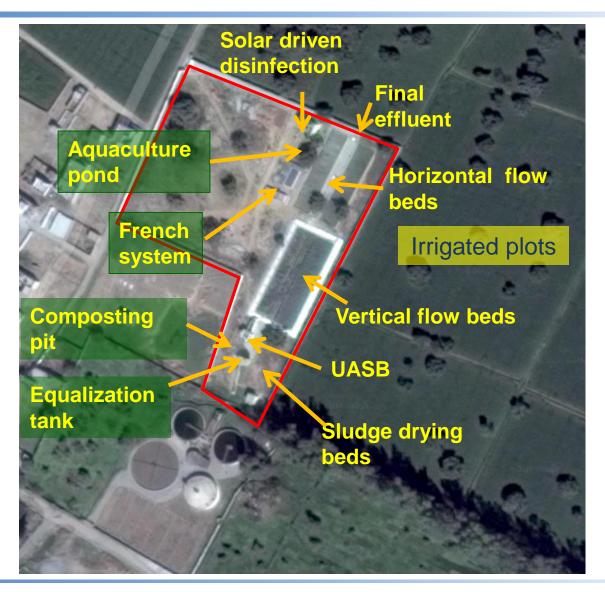
Technologies at Kalyani

Technologies at IGNTU

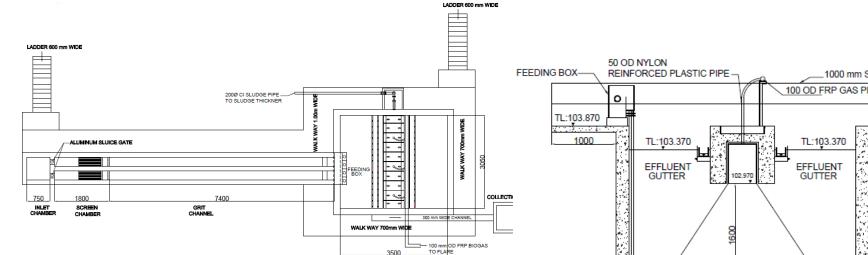

AMU site

- Anaerobic digestion + vertical flow + horizontal flow
- Solar-driven disinfection systems (UV and AO)
- French CW + aquaculture

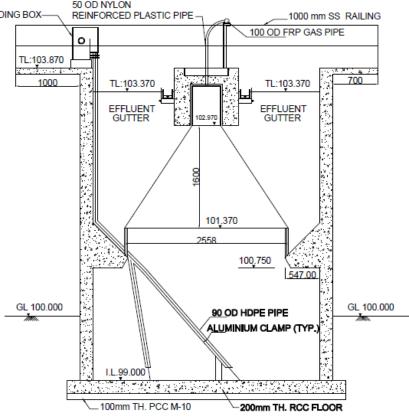

AMU AD-CW pilot plant design



AMU AD-CW pilot plant construction



AMU AD-CW: Equalisation tank and UASB design



3500

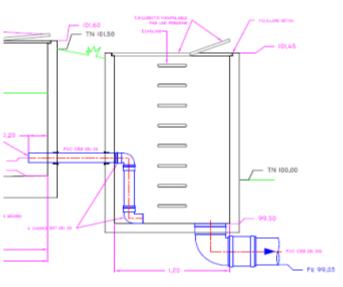
Design parameters for UASB

Dimensions (length/width/depth)	3.54/ 3.04/ 4.87	m
Volume	51.13	m ³
Sludge Bed Concentration	65 - 75	Kg TSS/m ³
Upflow Velocity at Avg. Flow	0.52-0.54	m/h
Min. hydraulic retention time (HRT)	7.0	hrs.
SRT at design temp.	35-40	days
VSS destruction in Reactor	50	%

AMU AD-CW: Equalisation tank and UASB construction

AMU AD-CW: UASB construction

AMU AD-CW: equalisation tank and UASB start-up and steady state



AMU AD-CW: Syphon construction for West Train

AMU AD-CW: West and East VF-CWs construction 💹

AMU AD-CW: West and East VFCWs construction

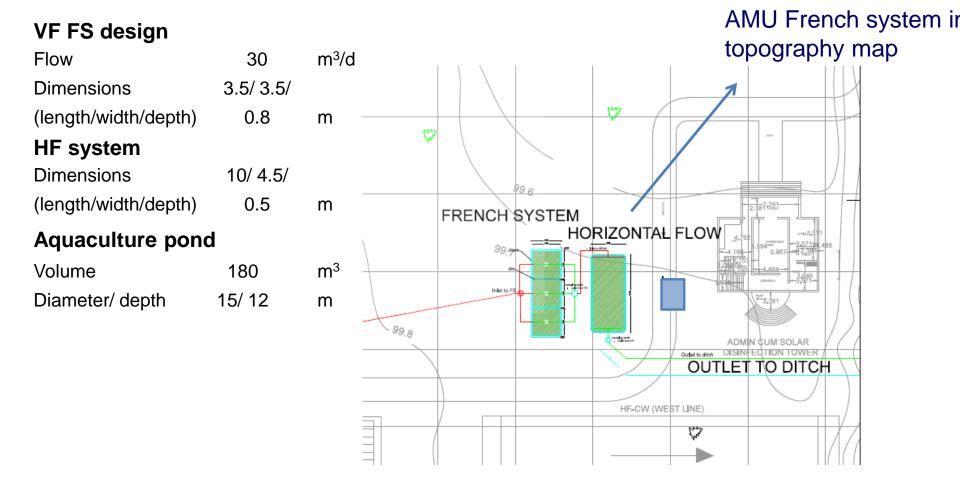
AMU AD-CW: West and East VFCWs construction

AMU AD-CW: West and East HFCWs construction phase

AMU AD-CW: Planting of the beds and final effluent

HF CW at AMU –Sustainability for Plantation Process

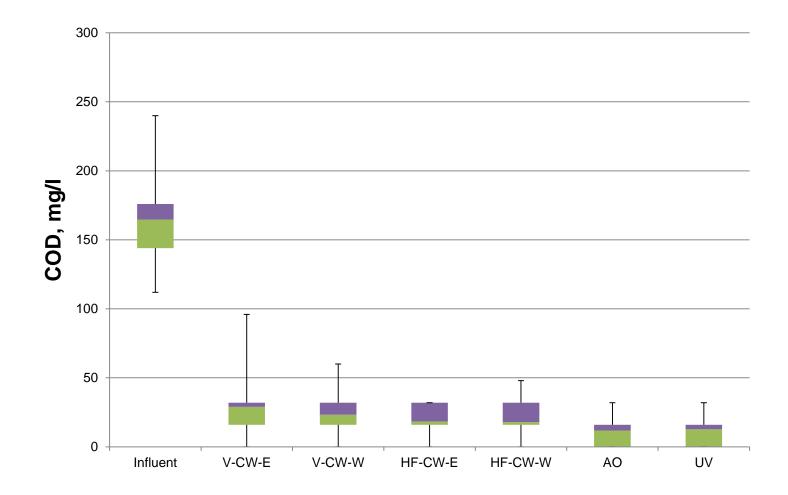
Solar-driven disinfection systems



AMU French system

AMU FS pilot plant under construction

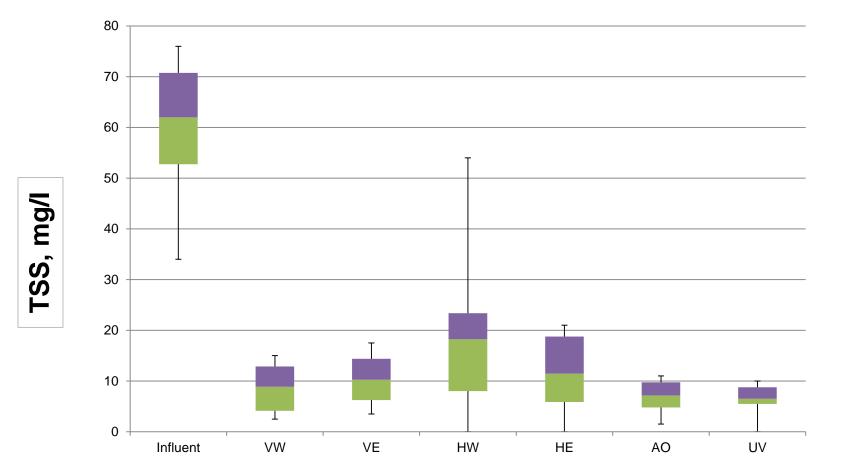
AMU FS pilot plant current status

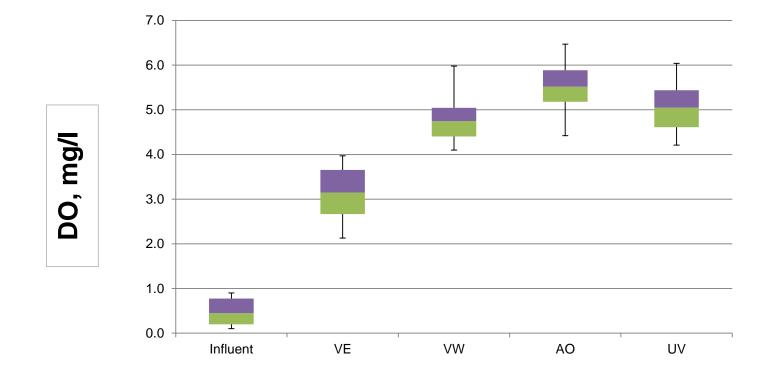


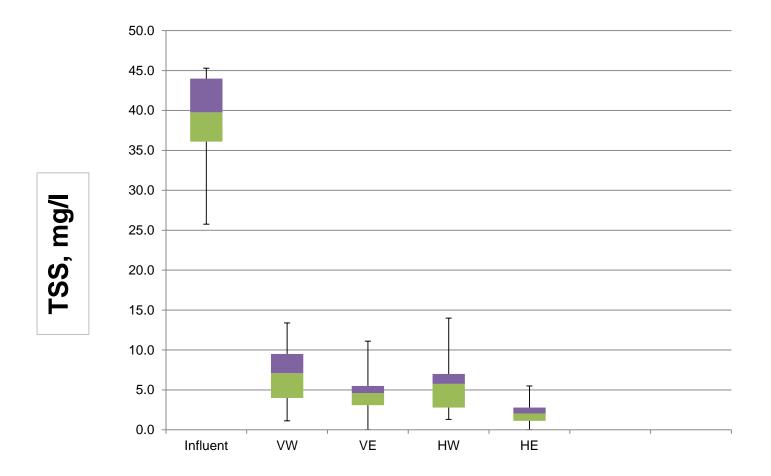
Results of AMU Pilots

AMU AD-CW - steady state condition

SWINGS

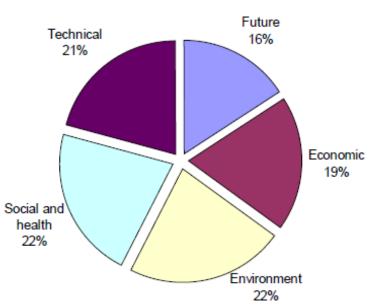



AMU AD-CW - steady state condition



<u>The Decision Support System</u> (DSS) is to assist potential users (planers, decision makers of local authorities, etc.) in the selection of appropriate configurations of wastewater treatment technologies that can be used in a specific context or project.

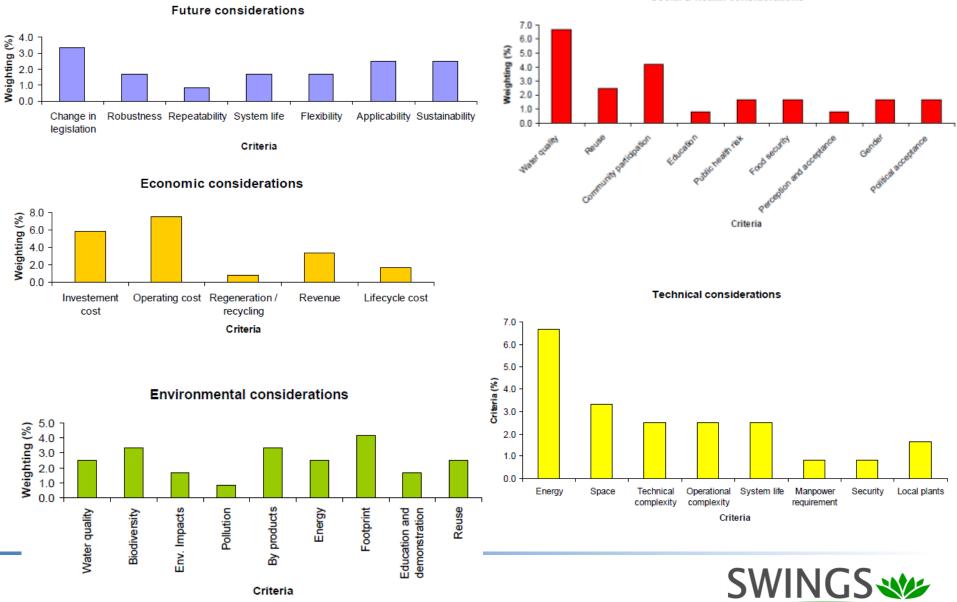
The DSS includes three main components:

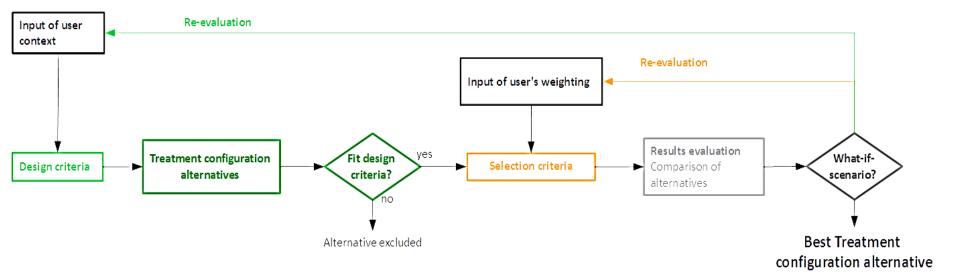

- A technological module based on the characteristics of the technologies integrated into the DSS and on the conditions of the project
- A criteria-selection module assessing the project through criteria whose importance is defined by the user
- An economic module providing a Dynamic Costs Comparison (DCC) (similar to a Life-Cycle Cost Assessment (LCCA)) assessing the cost of different treatment options

Decision Support System

- An initial evaluation process was undertaken on the 25th April KO meeting 2013 (Delhi) to identify criteria for the assessment of WW treatment approaches
- Five broad criteria groups were selected: Future considerations, Economic considerations, Environmental considerations, Social and Health considerations and Technical considerations
- The initial results indicate that the broad criteria groups are approximately equal in importance or value with exception of Future considerations (16%)

Criteria for treatment approach


• Each criteria group was divided on sub-criteria and all of them were also weighted


Identification, classification and fuzzy translation of indicators

Social & health considerations

Microsoft® Excel 2010 has been used to develop the DSS

• The DSS contains a user's interface, a database with facts about the technologies (applications, criteria, etc.), a treatment configuration alternative computation tool and a tool based on the programming language VBA to present the final results

• The user interface consists of an excel sheet where the user enter the frame parameters of the project:

- > The organic load of the wastewater.
- > The wastewater production.
- \succ The population served.
- \succ The area available.
- ➤ The budget available.

Technology	Treatment level		
Up-flow anaerobic sludge blanket reactor (UASB)	Primary		
French-type Constructed Wetland (FCW)	Primary/secondary		
Vertical flow constructed wetland (VFCW)	Secondary		
Horizontal Subsurface flow constructed Wetland (HSSFCW)	Secondary/Tertiary		
Disinfection Pond (DP)	Tertiary		
Solar UV Disinfection (SUD)	Tertiary/ Disinfection		
Solar Anodic Disinfection (SAD)	Tertiary/ Disinfection		

(18)B	* * *
	* * *
VAVRAN	* *

सत्यमेव जयते	

	Inflow Vater Quality	Target Effluent Purpose	Populatio to serve (P	Available Areal (m*)	5000							2			
User's input	1000 (mg/l.)	ognicatural surface invit	3007	20210	9000000		BOD	80	Second			Dates	Testiary Test Testi Distriction	Forded .	Start Evaluation
Treatment chain								- 1		1					
UASB UASB + Ventical Flore CV				37.5 12017.5	843933 4358995						-				Gent to Steep 2
UASB + Ventical Flow CV + Distrilection Pond UASB + Ventical Flow CV + Solar UV Distrilection UASB + Ventical Flow CV + Solar Anodic Distrilection UASB + Ventical Flow CV + Solar UV + Solar Anodic Distrilection				5007.5 10207.5 10507.5 10507.5	6764830 5678989 5962800 7283882	-									Sana Az
UASB + Vertical Flow CV + Social UV + Social Minodo Usinfection UASB + Vertical Flow CV + Horizontal Flow CV UASB + Vertical Flow CV + Horizontal Flow CV + Disinfection Pond UASB + Vertical Flow CV + Horizontal Flow CV + Solar UV Disinfection				27007.5 30007.5 20207.5	7283880	_									Save
UASB + Vertical Flow CV + Horizontal Flow CV + Solar Anodic Disinfection UASB + Vertical Flow CV + Horizontal Flow CV + Solar UV + Solar Anodic Disinfection				28537.5 29737.5	8969905 10209975										CasrSteet
French-type CW French-type CW + Hastasotal Flow CW				6000	3314930 6328930										Eait
French-type CV + Horizontal Flow CV + Disinfection Pond French-type CV + Horizontal Flow CV + Solar UV Disinfection French-type CV + Horizontal Flow CV + Solar Anodic Disinfection				24000 22200 22500	8728990 7640909 7925988										
French-type CV + Harizontal Flow CV + Safar UV + Safar Anadic Distriction French-type CV + Vertical Flow CV (+R)				201700	8241942 6023994										
French-type CV + Vertical Flow CV (+R) + Disinfection Pond French-type CV + Vertical Flow CV (+R) + Solar UV Disinfection French-type CV + Vertical Flow CV (+R) + Solar Anadic Disinfection				21000 19200 19500	0429900 7343908 7620907										
French-type CW + Vertical Flow CW (+R) + Solar UV + Solar Anodio Disinfection				 20700	894898										

Technological innovations

- Combination of anaerobic reactor (UASB) with constructed wetlands technology in order to prevent clogging and reduce demanded surface.
- Implementation of syphon methodology reducing energy demand of the plant.
- Implementation of vertical constructed wetland with internal recirculation.
- Combination of vertical and horizontal constructed wetlands to improve nutrient removal efficiency.
- Implementation of French system constructed wetlands treating raw wastewater (without primary treatment).
- Implementation of solar driven ultra violet (UV) and anoxic oxidation (AO) disinfection technology.
- Combination of bank filtration methodology with solar driven UV and AO disinfection technology.

Events, Outcomes and Future Prospects

Stakeholders' forums

AMU Stakeholders Forum and International workshop on benchmarking of sewage treatment plants

"Laboratory methods and practices for the evaluation of wastewater"

• To make measurements and lab results comparable among the systems so SWINGS partners and the scientific community can profit from breakthrough research

• The methods established in the Research Centers increase the quality of the research and become a normalized work procedure for the future

- Experimental setup
- Sampling techniques
- Lab equipment care
- Traceability
- Quality assurance.
- Nutrient cycles and wastewater quality

- Physico-chemical parameters determination in wastewater
 - Onsite parameters
 - Solids, COD, BOD_5 , NH_4 -N, PO_4^-
- Data analysis and interpretation

- Microbiological determination
 - Total coliforms
 - Fecal coliforms
 - E. coli

 Greenhouse gas emission analysis in constructed wetlands

SWINGS Project

Exchange of students

• Development of the project own web site (<u>www.swingsproject.com</u>) with an extranet published papers, documents, results, newsletters, etc.

SWINGS Project
NNNU II project (Med "Subliquenting Water Researces in hole with Grave and Sustainable Technologies") statut in Dispatche 2012 due to the Interest of Implementing Implyted and optimized unitation. No extension music indiversal exact final. A propertiest even of the Interest time Europe and 12 pathwas tom hole cardings of RED (comparise), XME (VO) and foci lowly sympositizes with interpretationaries payments to therein the uniter internet and analytic in Bartisgen against in tokus ump loss card, easy to attiget, numerative ord zero discharge methodology, tervel on biological and content systems. The EU and Indian constraints of the project are XMEN; Subteming, Earste and XMEJ (Majari, University), regardbay.

• Press releases in magazines and newspaper

Indus calls fou do locar languar tene no more la caladoguardos y de I+D, concosta corres divergo (statoguardos) Water resources in india with Ceven and Sustandes technologies), se deséñarán plantas de totarento sostenidares y ecceligi icas en india, capacito de trailitar el agua residual para diferentes, lador quantando los encanos ecumios hidricos del país asalvico.

Falle de familia de las bicences que formas el grupo informacion de muertajación de tuenço, durante una resumin en el contro d Amore

• Producing 3 Newsletters, 3 Leaflet and 2 videos.

Calle 1

provided at the cast of the descent

Attending and presenting papers to 22 specific International Conferences

"Safeguarding Water Resources in India with Green and Sustainable Technologies"

- 10 European and 10 Indian Partners (R&D, companies, SME, NGO and local body organisations)
- Project duration Sep. 2012 Sep. 2015
- http://www.swingsproject.eu/

SolarSpring AUTARCON INDO- GERMAN WORKSHOP ON SCIENCE - BASED MASTER PLANNING FOR BANK FILTRATION WATER SUPPLY IN INDIA

Safeguarding Water Resources in India with Green and Sustainable Technologies

Project Start Sep. 2012

SolarSpring

 10 European and 10 Indian Partners (R&D, companies, SME, NGO and local body organisations)

- SWINGS project aims at generating optimized municipal wastewater treatment concepts by combining "green" and sustainable technologies for enhancing water recycling and reuse, decreasing energy demand and utilising beneficial by-products from the process as a secondary resource.
- http://www.swingsproject.eu/

4th September 2013 @ World Water Week Stockholm

Munchen,

Best Practice : Safeguarding Water Resources in India with Green and Sustainable Technologies (EU FP 7)

Project Partners Germany:

AUTARCON GmbH, UFZ Leipzig, SolarSpring GmbH

The main objective of the project is to optimize low cost and enduring water treatment and management schemes for wastewater treatment and safe reuse in imgation, process water reutilization, aquaculture farm feed etc. Further, energy efficiency should be maximized by optimized methane production and solar energy use. The jointly developed schemes will be deployed mainly at the community level in India. IFAT

Main Objective:

- Anaerobic Digestion for Carbon removal and Biogas generation
- Constructed Wetlands for Nutrient removal
- May 2014 · Soil Aquifer and Bank Filtration System for particle removal
- Solar Driven Water Treatment systems for Disinfection of Treated water using AO and UF
- Cost Efficient pathogen monitoring Development of Decision Support Tools

• Project description on WISE-RTD portal and IWA WaterWiki plattform to characterise it in the context of EU water policies

• Submitting 3 papers to scientific journals under Open Access

Environmental Technology

Implementing advanced CW technology in India: SWINGS a cooperation project aimed at providing integral domestic wastewater treatment and reuse.

Arias, C. A.*, Istenić D.*, Molle, P.*Kilan, R.⁴, Avila, C.*, Brix H.*, Otter, P.*, Rolletschek, M.*, Khalil, N.'& Alvarez, J.A.J. *Aarhus University, Department of Bioscience, Ole Worms Alle 1, Bldg. 1135, 8000, Aarhus C., Denmark.<u>carlos.arias@biology.au.dk</u> *Universidad Politecnica de Cataluña, DEHMA, C/, Jordi Girona, 1–3, 08034 Barcelona, Spain, *LIMNOS Company for Applied Ecology Ltd., Pozarnice 41, 1351 BrezovicapriLjubljani, Slovenia, *Helmholtz Centre for Environmental Research. UFZ.- Permoserstr., 15 04318 Leipzig, Germany *IRSTEA 5 rue de la Doua, Villeurbanne, 69626, FRANCE *Kilian Water, Torupvej 4, Virads - PORT 3, 8654 Bryrup, Denmark *AUTARCON, Franz-Unich-Straße 18 f, 34117 Kassel, Germany *SolarSpring, Hanferstraße 28, 79108 Freiburg, Germany Department of Civil Engineering, Z H College of Engineering & Technology, Aligath Muslim University ALJGARH 202002, UP, India -AIMEN, C/, Relva, 27 A – Torneiros 36410 Porriño – Pontevedra, Spain

Abstract

Keywords; Constructed wetlands, international cooperation, water reuse, wastewa technology Constructed wetland and disinfection technologies for the treatment and reuse of wastewater in India. SWINGS project

Álvarez, J.A^a, Ávila, C.^b, Otter, P.^c, Kilian, R.^d, Istenič D.^e, Rolletschek, M.^f, Molle, P.^g, Khalil, N.^h, Ameršek, Iⁱ, Mishra, V. K.^j, Brix H.^k&Arias, C.A.^k

SWINGS, treatment wetland technology and knowhow transfer for the treatment and reuse of wastewater in India

Arias, C. A.^a, Avila, C.^b Otter, P.^c, Kilian, R.^d, Istenič D.^e, Rolletschek M.^f, Molle, P.^g, Khalil, N.^b, Brix H.^a & Alvarez, J.A.ⁱ

^aAarhus University, Department of Bioscience, Ole Worms Alle 1, Bldg. 1135, 8000, Aarhus C., Denmark, <u>carlos.arias@biology.au.dk</u>
^bUniversidad Politécnica de Cataluña, DEHMA, C/. Jordi Girona, 1–3, 08034 Barcelona, Spain,
^cAUTARCON, Franz-Ulrich-Straße 18 f, 34117 Kassel, Germany
^dKilian Water, Torupvej 4, Vrads - PORT 3, 8654 Bryrup, Denmark
^eLIMNOS Company for Applied Ecology Ltd., Pozarnice 41, 1351 BrezovicapriLjubljani, Slovenia
^fSolarSpring, Hanferstraße 28, 79108 Freiburg, Germany
^gIRSTEA 5 rue de la Doua, Villeurbanne, 69626, FRANCE
^hDepartment of Civil Engineering, Z H College of Engineering & Technology, Aligarh Muslim University ALIGARH
202002, UP, India.
ⁱAIMEN, C/. Relva, 27 A – Torneiros 36410 Porriño – Pontevedra, Spain

Peer-reviewed publications						
Total number		14*				
No.involving exclusively EU authors						
No.with at least one Indian and one EU author						
Joint Workshops/conferences organised						
Total no. number 5						
India-EU Water projects	Bangalore 2012					
UFZ Wetland Workshop	Leipzig (DE) 2013					
NAWATECH project workshop	UPC (SP) 2013					
Indo-German workshop on science based Master Planning for bank filtration water supply in India	Dreden ((DE) 2014				
International seminar on sustainability and the future of environmental engineering	Kalyani	Univ. 204				

Visits of European Scientists to Indian	Partner
No. of visits	65
No. of persons	33
Total person-days	788

Visits of Indian Scientists to European Partner					
No. of visits	4				
No. of persons	9**				
Total person-days	22				

Indian graduate students whose thesis was focused/based on the project							
No. of graduate students	6						
No. of persons weeks spent in EU	4.5						
EU graduate students whose thesis was focused/based on the project							
No. of graduate students	3						
No. of persons weeks spent in EU	42.5						
Indian post-docs whose research was focused/based on the project							
No. of postdocs	0						
No. of persons weeks spent in EU	0						
EU post-docs whose research was focused/based on the project							
No. of postdocs	10						
No. of porcone weeks apont in India	40.6						

No. of persons weeks spent in India40.6

www.aimen.es | aimen@aimen.es

Achievements

- 1. New research and demo water and wastewater training facilities (AMU, KALYANI and IGNTU).
- 2. Application of a low cost methodology to detect pathogens in treated water. Compliance with international standards
- 3. Strong involvement of community in building of the pilot plants

Compartment Bag Test (CBT), as the simplest method and probably the only available methods which is applicable in low resource rural settings. Objectives:

- to analyse the usability of the CBT kit and the Merck chlorine test (CT) in a low resource rural setting
- to compare the results of the CBT with the ISO 9308-1

• to test the applicability of the combination of the CT and the CBT for operational monitoring and verification of the efficiency of the disinfection (chlorination) at AMU, KU and IGNTU.

- AO Drinking water station for 2,000 PE in MP
- AO drinking Water Pilot Site in Haridwar and Dehradun (Uttarakhand)
- Solar Driven Arsenic Exclusion (SolArEx Project), WB
- Kilian Water building large CW systems in Denmark
- Future mobility projects for Indian scholars training in Europe
- Determination of design parameters

WSP and RE combined with solar driven disinfection. Kalvani WR

1000 PE CW system Roenienberg, Denmark 7000 PE CW system in Ramghat, UP

THANK YOU!

SAFEGUARDING WATER RESOURCES IN INDIA WITH GREEN AND SUSTAINABLE TECHNOLOGIES