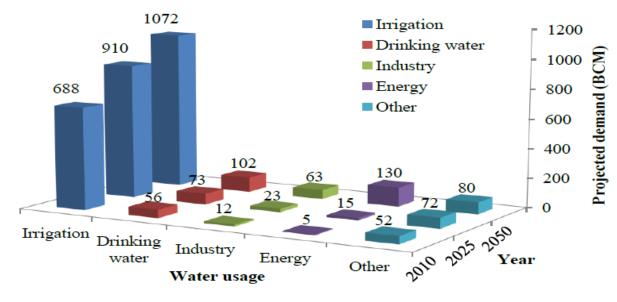
ISWATS, 2016

A PRESENTATION BY:


DR. ABHIJIT BANERJEE, SONAL JAIN

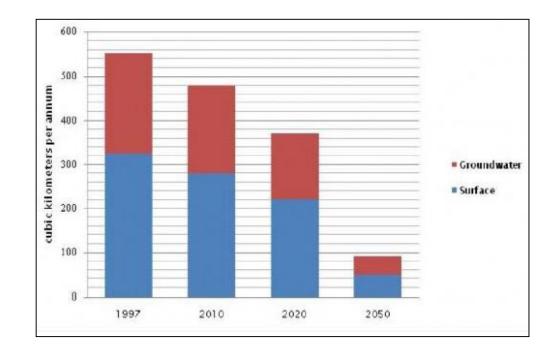
GIZ, NEW DELHI

Water4Crops

Current and future water use in India by sector

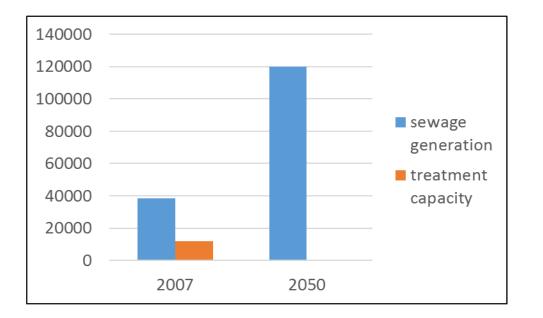

Water usage in India by different sectors

[Source: Central Water Commission, 2010. Water and Related Statistics. Water Planning and Project Wing]

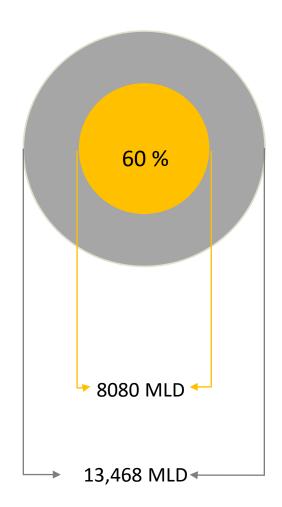

Water availability concerns

- Per capita water availability: 1545m³/yr (estimated)*
- It will decrease to 1140m³/yr by 2050.India will be in water stressed condition

(less than 1,700 m³ is considered water stressed and less than 1,000 m³ is considered water scarce)

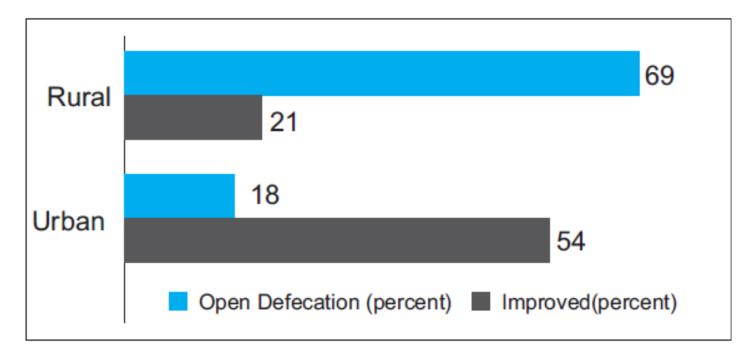

Shares of ground water and surface water to net irrigated area in India

Availability of unused water resource in India

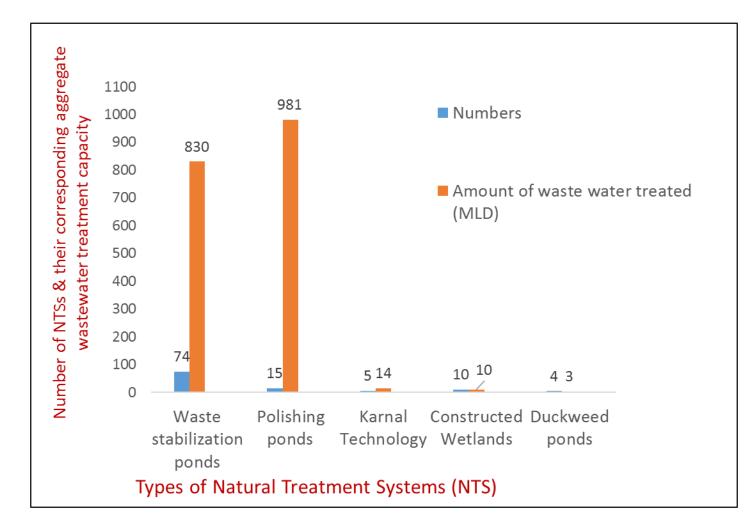

Municipal sewage generation and treatment situation

- Estimated sewage generation (Class I cities & Class II towns) : 38,524 MLD
- Existing treatment capacity : 11,787 MLD (about 30%)
- Only five metro cities have treatment capacity close to 100% of their sewage generation, these are Hyderabad, Vadodara, Chennai, Ludhiana and Ahmedabad.

[Source: UNICEF, FAO and SaciWATERs, 2013. Water in India: Situation and Prospects]


Industrial wastewater generation and treatment situation

[Source: Central Pollution Control Board, 2005. Performance Status of Common Effluent Treatment Plants in India. Central Pollution Control Board, India]


Rural sanitation situation

Estimated sanitation Coverage in urban and rural areas*

*[Source: Water in India: Situation and Prospects, UNICEF, FAO and SaciWATERs, 2013]

NATURAL TREATMENT SYSTEMS FOR WASTEWATER IN INDIA

Currently, about **1,838 million litres per day** (MLD) of wastewater is being treated using NTSs.

Of all the 108 Natural treatment systems in operation,

- 23 systems are producing treated effluents for irrigation;
- Effluents from 48 systems are being discharged into river or lake

[Source: D.Kumar et. al., Post-treatment and reuse of secondary effluents using natural Ltreatment systems: the India practices, Environ Monit Assess (2015)]

Performance of Natural treatment systems for removal of different pollutants (in %)

Type of NTSs/ Pollutant	Constructed Wetland	Waste Stabilization Pond	Sewage Fed Aquaculture	Polishing Pond	Duckweed Pond
BOD	90	80	90	48	90
COD	78	75	78	18	65
ТР	60	15	8	8	50
TKN	75	18	22	10	58
TSS	82	45	75	15	40
ТСС	99	95	98	70	98
FCC	99	95	95	80	98

[Source: D.Kumar et. al., Post-treatment and reuse of secondary effluents using natural Ltreatment systems: the India practices, Environ Monit Assess (2015)]

Advantages of CWs and NTS

- Low cost
- Simple enough to be operated by the local community while also providing employment opportunities.
- Does not require electricity
- Treated wastewater has the potential to increase farm productivity and profitability.
- Can be a potential source for reliable irrigation water supply for farmers.
- Such approaches have the potential to meet the rural sanitation goals.
- Also widely applicable for small townships, institutional campuses, small industries, etc.

TYPE OF TECHNOLOGIES BEING DEVELOPED IN W4C AND THEIR APPLICATIONS

Institution	Technology	Benefits/ Application	
NEERI	Wetland at Pandherkawada (Capacity; 6m ³)	Farmers get treated water in all seasons.Rural sanitation problem is solved.	
ICRISAT	A CW based wastewater treatment system was established at Kothapally village of Telengana, India to treat the wastewater from 500 households	 Decentralized CW can solve the rural India sanitation problem Provide employment for women/men self-help group in villages 	
MSSRF	Treating sugar mill effluent in Constructed Wetland and utilizing in an Integrated Agro Aqua Farming system (IAAF)	 Increased farm productivity and profitability without any net increase in water consumption Aquaculture will add nutrients in organic form which may subsequently reduce the additional inorganic fertilizers application in agriculture. Income from both aquaculture and agriculture 	
MSSRF	Distillery Effluent treatment by sequential biological treatment (bacteria followed by algae), followed by adsorption over activated charcoal and then polishing in constructed wetland.	Novel and low cost approach Bio treated DE is potential source of irrigation for edible crops without affecting crop and soil health	

Implications for Nationwide rollout of CW for Rural Sanitation

- Total Rural Population of India
 : 884 million
- \circ Rural Population without sanitation : 600 million (68 %)^{*}
- One CW of capacity 6m³ caters to : 200 people (Approx. 40 households)
- No. of CWs required to achieve total rural sanitation: 3 million
- Cost of one CW : INR 40,000**
- Total cost to construct 3 million CWs : INR 120 billion (12,000 crores)
- 2016 Budget Allocation for SBM
 : INR 9000 crores***
- Assuming 10 year commitment to achieve total rural sanitation, annual expenditure necessary: INR 1,200 crores
- Funding sources: Swachh Bharat Mission, NREGA, Panchayat, CSR, international donors and NGOs

Potential of treated wastewater for peri-urban agriculture in India

Irrigation potential with municipal wastewater from Class I and II cities in India*

Type of Wastewater	Volume of Wastewater (MLD)	Potential Irrigable Land (ha)
Treated	11,787	70,722
Untreated	26, 467	1,032,213

- Currently, untreated wastewater is widely used for peri-urban agriculture which has negative health and environmental impacts.
- Potential wastewater resource may appear negligible compared to total agricultural water use in India, but CAN BE IMPORTANT RESOURCE FOR PERI-URBAN AGRICULTURE.
- Example from Hyderabad :
 - Total agricultural land in greater Hyderabad region : ~ 4000 ha**
 - Potential Irrigable land from sewage generated : ~ 9000 ha ***

** Morla Raja Krishna Murthy, S.Bindu Madhuri. Changing Land Use pattern & Impact of Peri - Urban Agriculture in Greater Hyderabad region, Telangana State. IOSR Journal of Agriculture and Veterinary Science, Volume 8, Issue 9 Ver. I (Sep. 2015)

*** Amerasinghe, P.; Jampani, M.; Drechsel, P. Cities as sources of irrigation water: An Indian scenario. IWMI-Tata Water Policy Res. Highlight 2012,

^{*}Amerasinghe, P., Bhardwaj, R.M., Scott, C., Jella, K., and Marshall, F. 2013. Urban Wastewater and Agricultural Reuse Challenges in India. International Water Management Institute (IWMI) Research Report

Potential for Industrial Applications of CW

- \circ Breweries : ~ 70 *
- Sugar mills : 642 **
- SEZs in India: 200 ***

*All India Brewers Association <u>www.aiba.co.in</u>]

** Indian Sugar Mills Association <u>http://www.indiansugar.com/SugarMap.aspx</u>

*** Ministry of Commerce & Industry http://sezindia.nic.in/writereaddata/pdf/ListofoperationalSEZs.pdf

THANK YOU

Prepared by: Dr. Abhijit Banerjee (<u>abhijit.banerjee@giz.de</u>) Ms. Sonal Jain (<u>sonitajain@gmail.com</u>)

- Average size of household: 5 persons
- Average daily water use per person : 40 litres
- Wastewater generation per household : 160 litres (80% of water use)
- Say for 40 households :
 - Water requirement : 8,000 litres per day
 - Wastewater generation : 6,400 litres ~ 6 m³ per day