

ISWATS 2016; 21ST-23RD APRIL, PUNE, INDIA

WASTEWATER REUSE BY AN INNOVATIVE BIOLOGICAL REACTOR COMBINED WITH SAND FILTRATION

M. De Sanctis*, G. Del Moro, C. Di Iaconi, A. Lopez

*marco.desanctis@irsa.cnr.it

CNR-IRSA: Water Research Institute of the Italian National Research Council

Conventional treatment line

SEVENTH FRAMEWORK PROGRAMME

Drawbacks:

Sludge treatment

- Low settling speed
- Low organic load rate
- High sludge production
- Low flexibility
- > High area requirement

Treatment based on Sequencing Batch Biofilter Granular Reactor

SBBGR + SAND FILTER

Advantages og SBBGR over conventional AS treatment systems:

- Perform in a single stage the whole wastewater treatment train (primary and secondary treatments);
- > Offer higher operational flexibility and robustness;
- Treat higher organic load rate;
- Reduce the sludge production (up to 80%);
- Produce a high quality effluent;
- Reduce area requirement.

Conventional WWTP VS SBBGR

Conventional WWTP

WWTP based on SBBGR technology

SEVENTH FRAMEWORK PROGRAMME

Parameter	AS	SBBGR
Organic load rate [kgCOD/m ³ d]	< 1	2-2.5
Sludge concentration [kgTSS/m ³]	4-5	30-50
Sludge production [kgTSS/kgCOD _{rem}]	0.5-0.6	0.1-0.15
Sludge settling speed [m/h]	< 1	Absence of settling unit

AS: Activated sludge.

SBBGR operation - What makes SBBGR better?

Recirculation flow generates shear stress into packed zone of SBBGR

<u>Treatment and reuse in agriculture of wastewater</u> <u>produced by small communities</u>

Different parameters and quality standards among EU countries

Monitored parameters

- Physical and chemical: <u>COD</u> (Chemical Oxygen Demand), <u>suspended</u> <u>solids</u>, <u>nitrogen</u>, <u>phosphorus</u>, <u>pH</u>, <u>SAR</u> (Sodium Adsorption Ratio), <u>conductivity</u>.
- Microbiological: <u>Faecal Contamination Indicators</u> (*E. coli, Clostridium perfingens* spores, Somatic coliphages), <u>relevant pathogenic Protozoa</u> (*Cryptosporidium parvum* and *Giardia lamblia*) and <u>Salmonella</u>.

Analysis of physical and chemical parameters:

- Feed Wastewater (influent)
- SBBGR effluent

Analysis of microbiological parameters:

- Feed Wastewater (influent)
- SBBGR effluent
- SBBGR + Sand filter effluent

Physical and chemical parameters

Devenueter		Mean value ± standard	Indicative ranges for
Farameter		deviation	water reuse in EU
	Influent [mg/L]	237 ± 128	7
TSS	Effluent [mg/L]	10 ± 10	2-60
	Removal [%]	95 ± 5	
	Influent [mg/L]	535 ± 201	
COD	Effluent [mg/L]	38 ± 17	60-100
	Removal [%]	93 ± 3	
	Influent [mg/L]	321 ± 115	
BOD ₅	Effluent [mg/L]	2 ± 2	10-70
	Removal [%]	99 ± 1	
	Influent [mg/L]	52 ± 19	
NH4+	Effluent [mg/L]	2 ±5	
	Removal [%]	96 ± 8	
	Influent [mg/L]	73 ± 26	10-30
TN	Effluent [mg/L]	17 ± 9	
	Removal [%]	77 ± 11	
	Influent [mg/L]	11 ± 5	1-10
P _{tot}	Effluent [mg/L]	4 ± 1	
	Removal [%]	62 ± 15	

Physical and chemical parameters

Nitrifying and denitrifying bacteria can coexist in different regions of granules leading to simultaneous nitrification-denitrification.

SEVENTH FRAMEWORK PROGRAMME

Physical and chemical parameters

Doromotor		Mean value \pm standard	Indicative ranges for	
Farameter		deviation	water reuse in EU	
лЦ	Influent	$\textbf{7.4} \pm \textbf{0.2}$	6 0-0 5	
рп	Effluent	$\textbf{7.8} \pm \textbf{0.2}$	0.0-9.0	
Conductivity	Influent [µS/cm]	1223 ± 178	1000 2000	
Conductivity	Effluent [µS/cm]	$\textbf{892} \pm \textbf{99}$	1000-3000	
CAD	Influent	$\textbf{2.5}\pm\textbf{0.6}$	6-12	
JAR	Effluent	$\textbf{2.8} \pm \textbf{0.8}$	5 12	

Influent

SBBGR Effluent Sand filter effluent

Water4Crops

Bacteria

Parameter		Mean value \pm standard	Typical secondary
		deviation	effluent
	Influent [MPN/100mL]	$1.0 \pm 2.9 \cdot 10^{7}$	
E. coli	Effluent [MPN/100mL]	$0.9\pm2.1\cdot10^3$	10 ³ -10 ⁵
	LUR	3.2 <u>+</u> 1.1	
	Influent [CFU/100mL]	5.2 ± 5 <mark>.</mark> 2 ⋅ 10 ⁵	
Clostridium perfringens spores	Effluent [CFU/100mL]	4.9 ± 6.5 · 10⁴	10 ³ -10 ⁵
point going operiod	LUR	1.1 :: 0.4	
	Influent	Present	
Salmonella	Effluent	Never cetected	0-10 ¹
		Ļ	
	WHO -	- reuse: E. coli < 10³ (CFU/100mL

LUR: Log Unit Removed; MPN: Most Probable Number; CFU: Colony Forming Units.

Virus and protozoa

Parameter		Mean value \pm standard deviation	Typical secondary effluent
	Influent [PFU/100mL]	$\textbf{2.8} \pm \textbf{3.3} \cdot \textbf{10}^{5}$	
Somatic coliphages	Effluent [PFU/100mL]	$\textbf{1.5} \pm \textbf{1.7} \cdot \textbf{10}^{4}$	10 ³ -10 ⁴
	LUR	$\textbf{1.4} \pm \textbf{0.3}$	
	Influent [Cysts/L]	$1.3 \pm 1.6 \cdot 10^{3}$	
Giardia lamblia cysts	Effluent [Cysts/L]	$\textbf{2.9} \pm \textbf{3.6} \cdot \textbf{10}$	10 ² -10 ³
	LUR	$\textbf{1.5} \pm \textbf{0.9}$	
	Influent [Oocysts/L]	$4.7 \pm 4.7 \cdot 10^{1}$	
Cryptosporidium	Effluent [Oocysts/L]	$\textbf{0.7} \pm \textbf{0.5}$	10 ¹ -10 ²
	LUR	$\textbf{1.8} \pm \textbf{0.3}$	

Conventional primary and secondary treatments are almost uneffective in protozoa removal (< 1 log unit)

LUR: Log Unit Removed; PFU: Plaque Forming Units

Water4Crops

Bacteria

Parameter		Mean value \pm standard	SBBGR + Sand
		deviation	filter
E ooli	Effluent [MPN/100mL]	$\textbf{6.0} \pm \textbf{9.1} \cdot \textbf{10}$	
2. 001	LUR	1.0±0.7	4.2 log units
Clostridium	Effluent [CFU/100mL]	$1.8 \pm 2.1 \cdot 10^3$	-
perfringens spores	LUR	1.6 ± 0.7	2.7 log units
Salmonella	Effluent	Never detected	

Maximum *E. coli* concentration for unrestricted and restricted irrigation

France: 250 - 10000 CFU/100mL

Spain: 100 - 1000 CFU/100mL

Germany: 0 - 200 CFU/100mL

LUR: Log Unit Removed; MPN: Most Probable Number; CFU: Colony Forming Units.

Virus and protozoa

Parameter		Mean value ± standard deviation	SBBGR + Sand filter
Sometic colinhages	Effluent [PFU/100mL]	$\textbf{2.9} \pm \textbf{4.7} \cdot \textbf{10}^{2}$	
Somatic conpriages	LUR	1.8 ± 0.4	3.2 log units
Ciardia lamblia aveta	Effluent [Cysts/L]	0.7± 0.7	U
Giardia iamona cysis	LUR	1.4 ± 0.6	2.9 log units
Cryptosporidium	Effluent [Oocysts/L]	Never detected	> 2 log units
parvum oocysts			0

LUR: Log Unit Removed

Parameter	Feed wastewater	SBBGR	SBBGR + Sand filter
<i>E. coli</i> [MPN/100mL]	$1.0 \pm 2.9 \cdot 10^{7}$	$0.9 \pm 2.1 \cdot 10^3$	$\textbf{6.0} \pm \textbf{9.1} \cdot \textbf{10}$
<i>Clostridium perfringens</i> spores [CFU/100mL]	$5.2\pm5.2\cdot10^5$	$4.9 \pm 6.5 \cdot 10^4$	$1.8 \pm 2.1 \cdot 10^3$
Salmonella	Present	Never detected	Never detected
Somatic coliphages [PFU/100mL]	$\textbf{2.8} \pm \textbf{3.3} \cdot \textbf{10}^{5}$	$1.5\pm1.7\cdot10^4$	$\textbf{2.9} \pm \textbf{4.7} \cdot \textbf{10}^2$
Giardia lamblia cysts [Cysts/L]	$1.3 \pm 1.6 \cdot 10^{3}$	2.9 ± 3.6 · 10	0.7± 0.7
Cryptosporidium parvum oocysts [Oocysts/L]	$4.7 \pm 4.7 \cdot 10^{1}$	0.7 ± 0.5	Never detected

- Physical and chemical quality of SBBGR effluent are compatible with agricultural reuse.
- Microbiological quality of SSBGR effluent is higher or comparable to that obtained at conventional WWTPs by primary and secondary treatments.
- The average *E. coli* content in the effluent of SBBGR would allow its reuse according to WHO criteria.
- The integration of SBBGR with sand filter increased microbiological quality of the effluent for all the monitored parameters (1.0-1.8 log units) and the plant effluent met quality criteria of several countries.
- SBBGR + sand filter reduced protozoa concentration to less than 1 cysts/L.
- Tertiary disinfection by UV (fluency 40 mJ/cm²) reduced the *E. coli* and virus content below 10 MPN/100mL and PFU/100mL respectively.
- > Tertiary disinfection by PAA (1 mg/L) completely removed *E. coli*.

THANK YOU FOR YOUR ATTENTION