Pilot demo location - Spain



# Capacitive Deionization (CDI) Overview

CONFIDENTIAL INFORMATION | © 2015, Copyright Aquas Technologies, Corp.

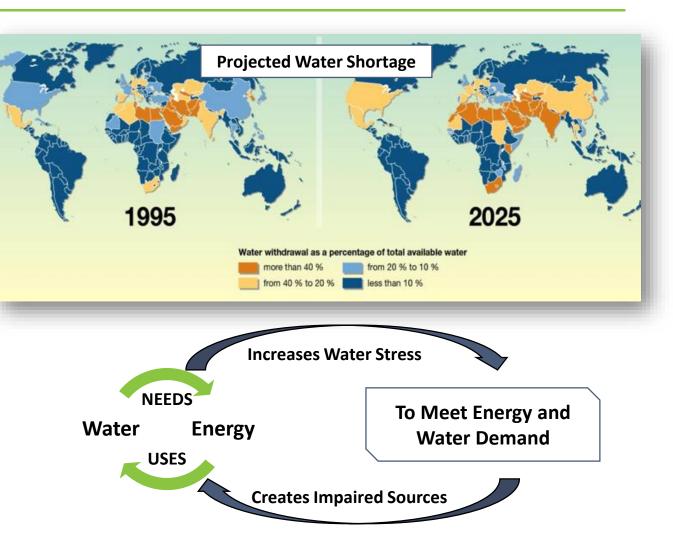


#### About Aquas Technologies Corp.

#### About Aquas Tech

- Founded in 2010, Aquas' CDI product is <u>highly energy efficient</u> and modular serves small to large utility scale systems
- We are a <u>licensee with exclusive rights</u> to commercialize capacitive de-ionization (CDI) patented technologies including carbon aerogel materials from US Dept. of Energy's Lawrence Livermore National Laboratory (LLNL) for water treatment
- With this strategic license, Aquas is leveraging <u>over \$40 Million spent</u> by LLNL/DOE in developing CDI technologies in the past 20 years to accelerate our product roadmap
- We are actively engaged in the ongoing CDI research and materials development at Capacitive defonization (CDI) is a rapidly growing technology for removal of ions/salt from water to make potable water using electricity and supercapacitors

#### First new technology in 25 years that can truly disrupt the water treatment markets


Aquas Confidential

#### Water Stress & response US DOE 2014 Report, "Water-Energy Nexus: Challenges and Opportunities"

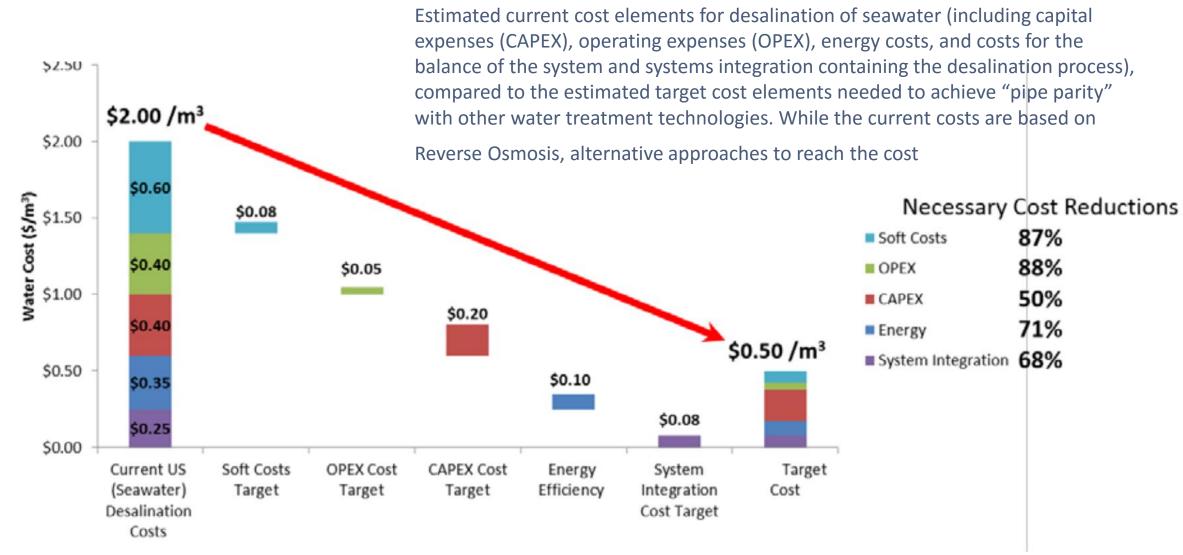
- Brackish water treatment to reduce water stress caused by climate change
- Government response to drought (such as \$7.5B fund in California)
- Stricter government regulation & policies on pollution and sewage discharge is also encouraging water recycling and re-use
- Industrialization and improved standard of living in developing countries - citizen's demand for clean water

#### Energy-Water Nexus:

- Thirst for power re-use of water for energy generation - <u>Urgent need for energy</u> <u>efficient water treatment solutions</u>
- Diverse water treatment market with varied desalination needs
- Energy intensive reverse osmosis not viable in long term Aquas Confidential



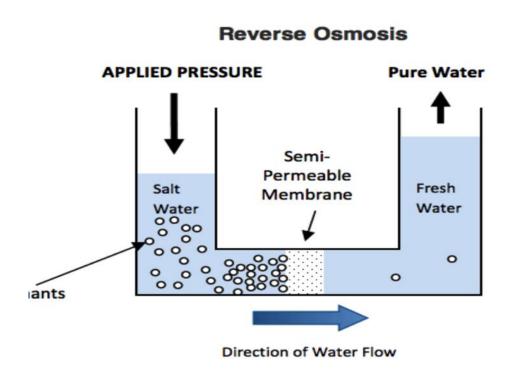



**Treating Non-Traditional Water Resources To Alleviate Water Stress** Desalination is most-promising technology – very energy intensive





Source: US DOE 2014 Report, "Water-Energy Nexus: Challenges and Opportunities"


#### **US DOE: RO CAPEX Reduction Goals and Pipe Parity**

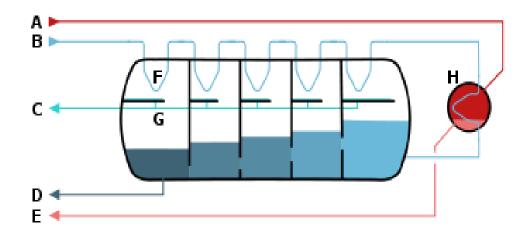


Aquas Confidential

#### Brief Review of 2 most widely adopted Sea Water Desal Methods Reverse Osmosis(RO)-Membrane






Reverse osmosis (RO) is a water purification technology that uses a *semipermeable membrane*. In general, *RO* systems apply pressure against semipermeable membrane, where the membrane is

preamble only to the water molecules.

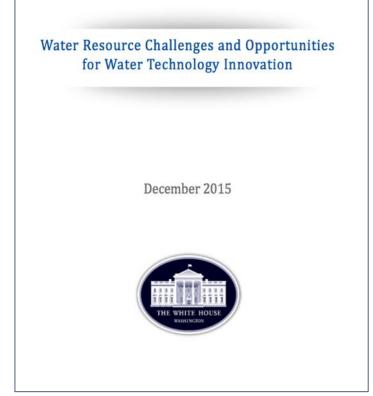
## Energy Consumption per **TON** of Sea Water input: 4 kWh

#### Brief Review of 2 most widely adopted Sea Water Desal Methods Multi-stage Flash Distillation / Multi-effect Distillation-Thermal





**Multi-stage flash distillation (MSF)** is a water desalination process that distills sea water by flashing (low pressure evaporation) a portion of the water into steam in multiple stages of what are essentially countercurrent heat exchangers.


Multi-stage flash distillation plants produce about 60% of all desalinated water in the world\*

Energy Consumption per **TON** of Sea Water input: 23 to 27 kWh\*\*

Image Source: <u>https://en.wikipedia.org/wiki/Multi-stage\_flash\_distillation</u> \*Source: <u>https://en.wikipedia.org/wiki/Multi-stage\_flash\_distillation</u> \*\*Source: http://www.iaas.org/n0813043.htm

### White House Report on Water Challenges and New Tech



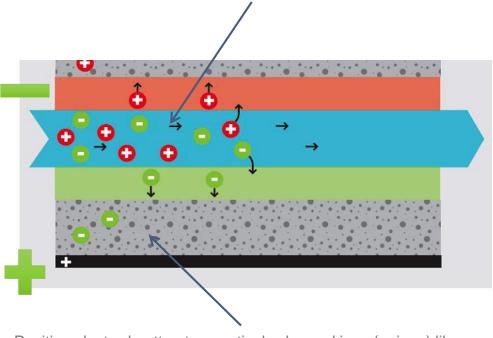


...Technologies such as forward osmosis, [...] freeze separation, and capacitive deionization potentially can be used in commercial desalination of both brackish and sea-water....

[Source: "Water Resource Challenges and Opportunities for Water Technology Innovation", 2015]

| Capacitive<br>Deionization | ambient | 0.11kWh <sub>e</sub> /m <sup>3</sup> |
|----------------------------|---------|--------------------------------------|

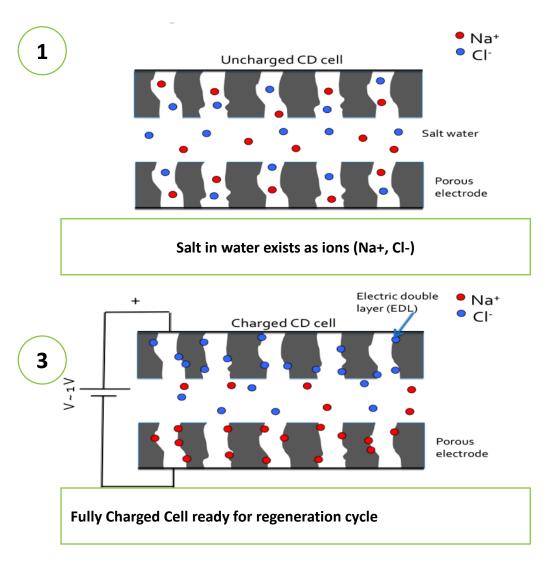
4X LESS ENERGY THAN EXISTING PRODUCTS

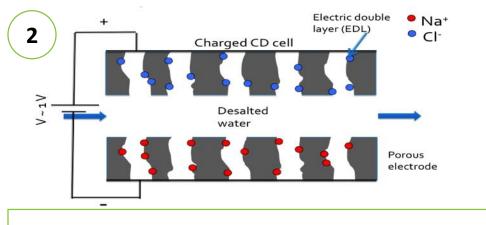

CDI IS LOW PRESSURE & LOW TEMPERATURE TECHNOLOGY

### Basic Concept of CDI

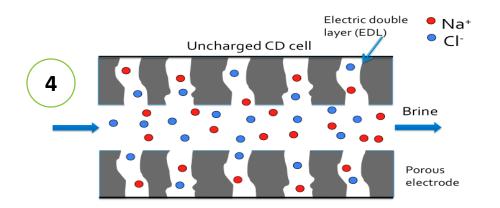
()

- Water flows **between** high surface area electrode pairs having a potential difference of 1.3 Volts
- Ions and other charged particles are attracted to and held on the electrode of opposite charge while desalination process and rejected into a low sal<sup>Aquas</sup>Gorticeptial brine during


Negative electrode attracts positively charged ions (cations) like Sodium (Na), Calcium (Ca), Magnesium (Mg)




Positive electrode attracts negatively charged ions (anions) like Chloride (Cl), Nitrate (NO<sub>3</sub>), Carbonate (CO<sub>3</sub>), Silica (SiO<sub>2</sub>)

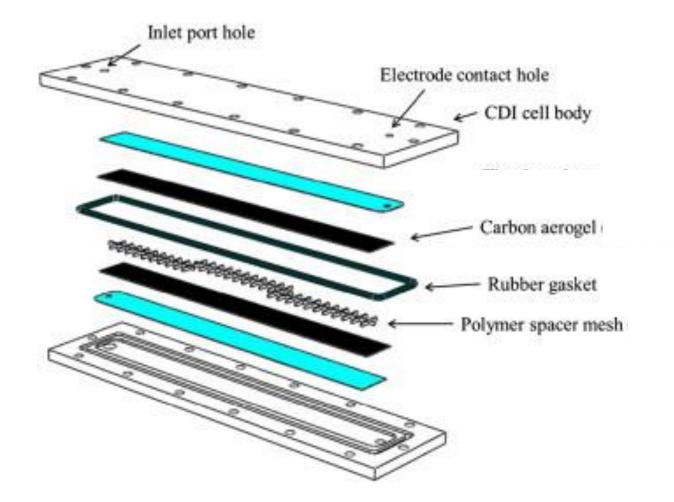



### Basic Concept of CDI





As water flows, Toxic Chemical ions are adsorbed and trapped



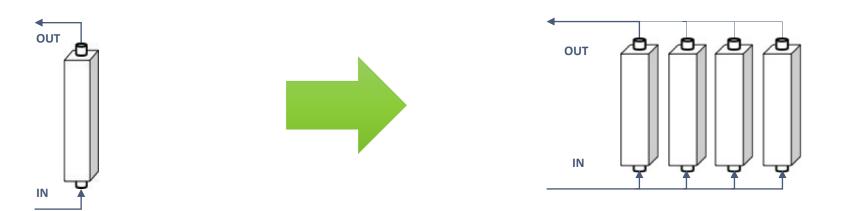

Cell discharge releases adsorbed ion in Brine Stream, energy is recovered during discharge for use in next cycle

#### Aquas Confidential

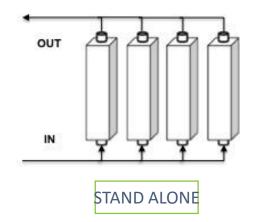
#### CDI Cell Assembly

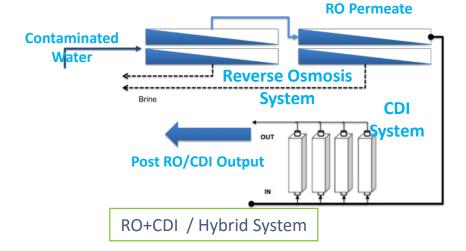





#### **Typical Cell Technical Data**

- Cell Dimension: 4.5 in x5 in x25 in
- Capacitance : 50kF
- Water Capacity: 1-3 lpm
- Operating Voltage: 1.6V (2V Max) DC
- Operating Pressure(psi) : 40psi
- Energy Consumed : 0.06-0.25(kWh/m3)




#### Scalable and Modular Systems



Modular design for linear scalability – CDI cell Arrays



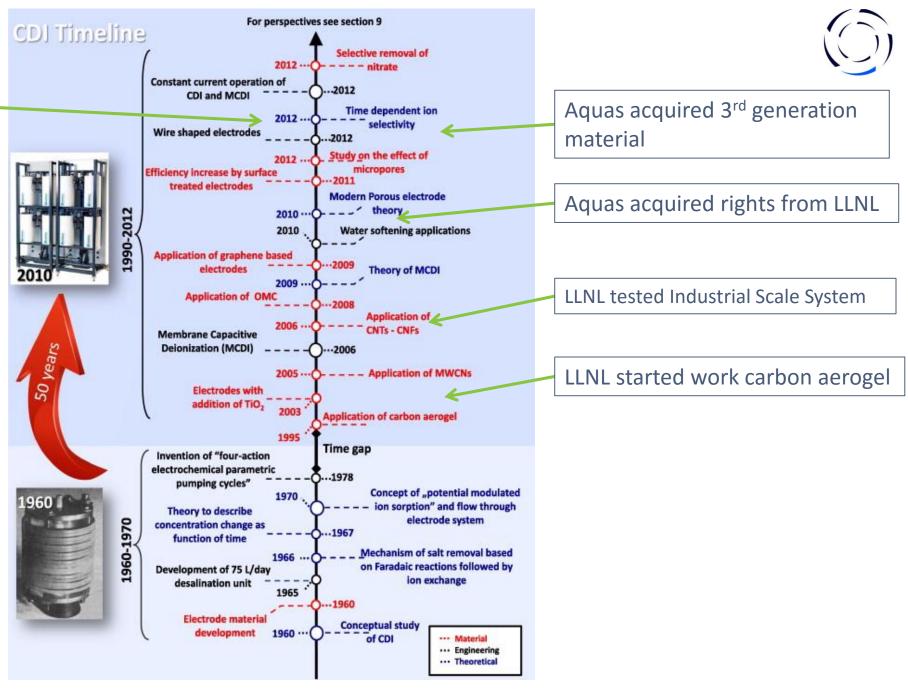




# **Technology Development History**



#### • Established Technology:


 Principles known since 1960's as a way to remove ions, bacteria, and other toxins from water and other liquids. Already in use commercially as Electro De-ionization

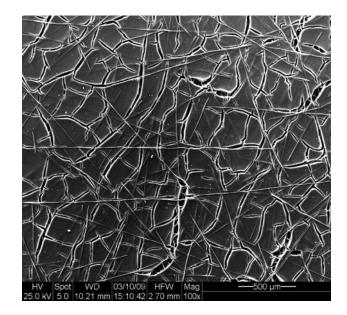
#### • Early Break-Through:

- Creation of high surface area aerogels in early 1990's
- Over \$40 million invested by LLNL in Advanced Carbon Materials R&D and Capacitive Deionization (CDI) systems for use by US DOE and DOD
- CDI 2.0:
  - LLNL scientists developed metal oxide doped aerogels which can be used for enhancing ion-selectivity
  - Aquas Tech has exclusive license agreement for using these "advanced"
     Aquas Confidential
     for water treatment
     <sup>14</sup>



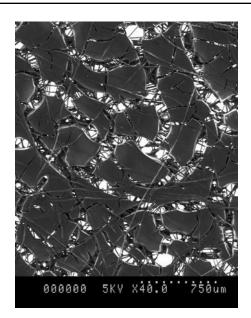
**Stanford**- Stanford University **LLNL**- Lawrence Livermore National Laboratory




### Advanced Carbon Materials



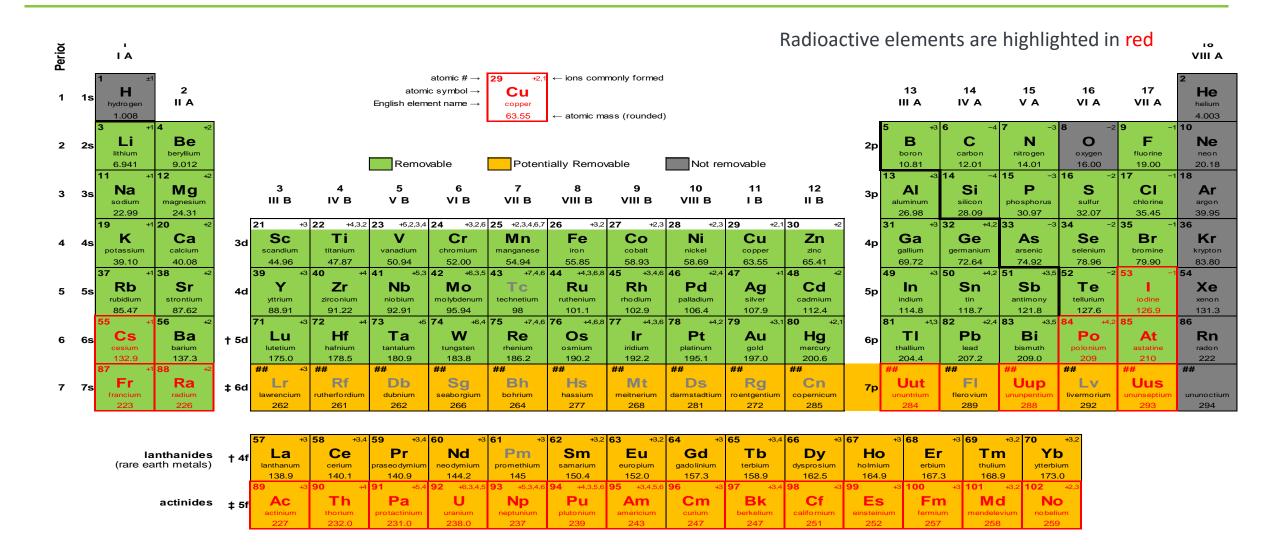
| Activated | High Surface Area                                                                               |  |  |
|-----------|-------------------------------------------------------------------------------------------------|--|--|
|           | Can be made from commodity carbonaceous materials like coconut shells, sugars, etc.             |  |  |
| Carbon    | Cannot control porosity or tune the characteristics for functionalization and doping            |  |  |
|           | Commoditized materials with varying degree of efficiency, high quality AC are expensive to make |  |  |
| Carbon    | High Surface Area which can be controlled and tuned for specific applications                   |  |  |
|           | Ideally suited for doping and functionalization                                                 |  |  |
| Aerogel   | Consistent quality, easy to control and reproduce                                               |  |  |
|           | Inexpensive to scale up, widely available at present not commoditized                           |  |  |
| Carbon    | Highly engineered nano materials with tunable surface area                                      |  |  |
|           | Excellent electrical, mechanical, and electrical characteristics                                |  |  |
| Nanotube  | Good for water and energy applications                                                          |  |  |
|           | Expensive and difficult to mass produce                                                         |  |  |


#### Carbon Aerogel Electrode Specs

| Sample | BET Surface Area<br>(m <sup>2</sup> /g) | Total Pore Vol<br>(cm <sup>3</sup> /g) | Material Density<br>(grams/cm <sup>3</sup> ) | Avg Pore Size<br>(nm) | Specific Capacitance<br>(F/gram) | Sorbent Type     |  |
|--------|-----------------------------------------|----------------------------------------|----------------------------------------------|-----------------------|----------------------------------|------------------|--|
| Type 1 | 451                                     | 0.31                                   | 0.8214                                       | 4                     | 36.91                            | Meso/Microporous |  |
| Type 2 | 418                                     | 0.75                                   | 0.4556                                       | 10                    | 26.36                            | Mesoporous       |  |
| Туре 3 | 497                                     | 0.61                                   | 0.4437                                       | 8                     | 24.67                            | Mesoporous       |  |
|        | Courtesy of Theodore F. Bauman, LLNL    |                                        |                                              |                       |                                  |                  |  |






- Tunable Porosity
- Tunable Density
- Optionally, dope with Metals Oxides, Graphene, CNTs, etc.





|   | Material                                          | Specific Surface<br>Area (m²/gram) | Current Scale of<br>Cell/ Technology<br>tested | Ion Removal<br>Capacity (mg of Cl <sup>-</sup><br>/g of Carbon) | Price Performance<br>(\$/m <sup>3</sup> processed)* |
|---|---------------------------------------------------|------------------------------------|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|
|   | Activated Carbon                                  | 2000 - 3000                        | Lab Scale                                      | 4                                                               | 1,000                                               |
|   | Activated Carbon<br>Aerogel                       | 3000                               | Lab Scale                                      | 10                                                              | 10,000                                              |
|   | Carbon Aerogel<br>(Gen 1) [Aquas]                 | 600                                | Lab Scale                                      | 3                                                               | 2,500                                               |
| ( |                                                   | 400-600                            | Full Scale                                     | 2.7-3.5                                                         | 1,000                                               |
|   | Functionalized<br>Carbon Aerogel<br>[Aquas 2015+] | 1100                               | Prototype Scale                                | 9                                                               | 300                                                 |
|   | PACMM                                             | 800                                | Lab Scale                                      | 4-5                                                             | 10,000                                              |

# CDI is more than Desalination. It can remove most of the impurities.

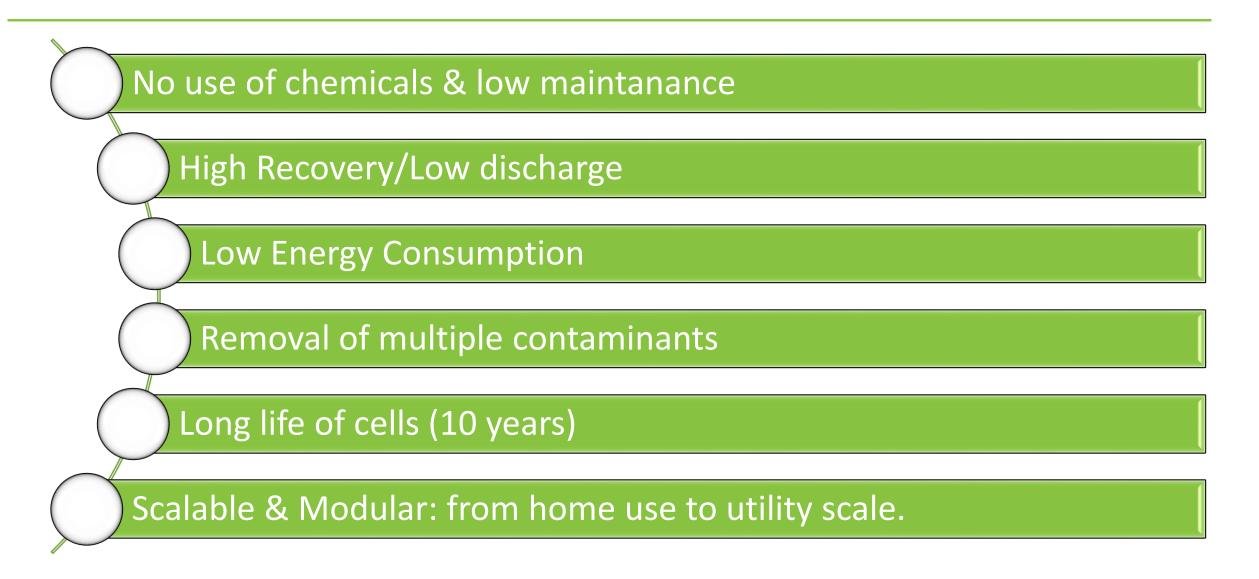


## **Technology Comparison**

#### APPENDIX



Overview of technical metrics and potential for technological advances for selected desalination technologies. (Source: Department of Energy, 2015)


| e<br>esearch       | Technology                                                                          | Current<br>Operating<br>Temperature<br>Range                                                                                          | Current Power<br>Consumption                                                                                                                  | Current<br>State of the<br>Art Costs | Potential 'Game-Changing'<br>Technology Advances                                                                                                                 |                             |
|--------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| )E has             | Reverse<br>Osmosis (RO)                                                             | ambient                                                                                                                               | ~3 kWh/m <sup>3</sup>                                                                                                                         | \$2.00/m <sup>3</sup>                | <ul> <li>Long-lifetime membranes<br/>(high-durability, low-<br/>fouling)</li> <li>Integration with renewable<br/>primary energy sources</li> </ul>               |                             |
| nology             | Multi-effect<br>Distillation /<br>Multi-stage<br>Flash<br>Distillation<br>(MED/MSF) | 70 – 110 °C                                                                                                                           | <ul> <li>15 - 20<br/>kWh/m<sup>3</sup></li> <li>1 - 2kWh<sub>e</sub><br/>additional</li> </ul>                                                | \$2 - \$3/m <sup>3</sup>             | <ul> <li>Low-cost, high-flux heat<br/>exchanger materials</li> <li>Integration with<br/>waste/renewable sources of<br/>heat</li> </ul>                           |                             |
|                    | Forward<br>Osmosis (FO)                                                             | <ul> <li>Thermal<br/>FO: 80 –<br/>100 °C</li> <li>Non-<br/>thermall<br/>y-driven<br/>FO is<br/>also<br/>being<br/>explored</li> </ul> | <ul> <li>0.5 – 1.5<br/>kWh<sub>e</sub>/m<sup>3</sup></li> <li>Thermal FO:<br/>additional 10 –<br/>16 kWh<sub>t</sub>/m<sup>3</sup></li> </ul> | No<br>commer-<br>cial data           | <ul> <li>New membranes designed<br/>for FO (currently using RO<br/>membranes)</li> <li>Materials discovery for draw<br/>solutes</li> </ul>                       |                             |
|                    | Membrane<br>Distillation<br>(MD)                                                    | 40 – 100 °C                                                                                                                           | <ul> <li>1 - 30<br/>kWh<sub>2</sub>/m<sup>3</sup></li> <li>Current wide<br/>range due to<br/>no large-scale<br/>projects</li> </ul>           | No current<br>commerci<br>al data    | <ul> <li>Thermally insulating<br/>membranes that preserve<br/>selectivity</li> <li>Low-cost, high-flux heat<br/>exchanger materials</li> </ul>                   | ¢ο το ¢1 ο/m3               |
|                    | Dewvapora-<br>tion                                                                  | 120 °C                                                                                                                                | 6 kWh <sub>e</sub> /m <sup>3</sup> -<br>407 kWh <sub>t</sub> /m <sup>3</sup>                                                                  | \$80/m <sup>3</sup>                  | <ul> <li>Low-cost, high-flux heat<br/>exchanger materials</li> <li>Integration with<br/>waste/renewable sources of<br/>heat</li> <li>Optimized system</li> </ul> | \$0.50-\$1.0/m <sup>3</sup> |
| Aquas Confidential | Capacitive<br>Deionization                                                          | ambient                                                                                                                               | 0.11kWh <sub>e</sub> /m <sup>3</sup>                                                                                                          | No current<br>commerci<br>al data    | <ul> <li>configuration</li> <li>Hybridization with other desal technologies</li> <li>Novel electrode materials</li> </ul>                                        | <u> </u>                    |

After extensive industry and research community interaction DOE has come up with potential technology advances



| Cost per gallon                    | Capacitive<br>Deionization | Reverse Osmosis | Multi-Stage Flash /<br>Multi-Effect<br>Distillation | Electro-dialysis |
|------------------------------------|----------------------------|-----------------|-----------------------------------------------------|------------------|
| Capital Expenditure                | Medium                     | High            | Medium                                              | Medium           |
| <b>Operation &amp; Maintenance</b> | Low                        | Medium          | Medium                                              | Medium           |
| Pre/post-treatment requirements    | Low                        | High            | Medium                                              | High             |
| Energy Usage                       | Low                        | Medium          | High                                                | Medium           |
| Water Recovery                     | High                       | Medium          | High                                                | Medium           |

#### Advantages of CDI system







Hybrid system for sea water desalination

Removal of Boron from Desalinated water

Removal of Fluoride, Arsenic, Nitrate, Phosphate, Chromium, Lead, Perchlorates, Cadmium and more

Ultrapure water for Industrial, laboratory use

**Use in Heavy Metal Detection System** 

## Is CDI ready for the market?



- Few companies introduced small size systems
- Biggest CDI plant running in China for water recycling
- Lot of traction from Government Agencies from USA, Europe, Australia and China
- Novel material is going to make a difference
- Technology is ready for marker roll out for small and mid size systems
- It will need Industry support to get in to mainstream

#### **Aquas CDI System**





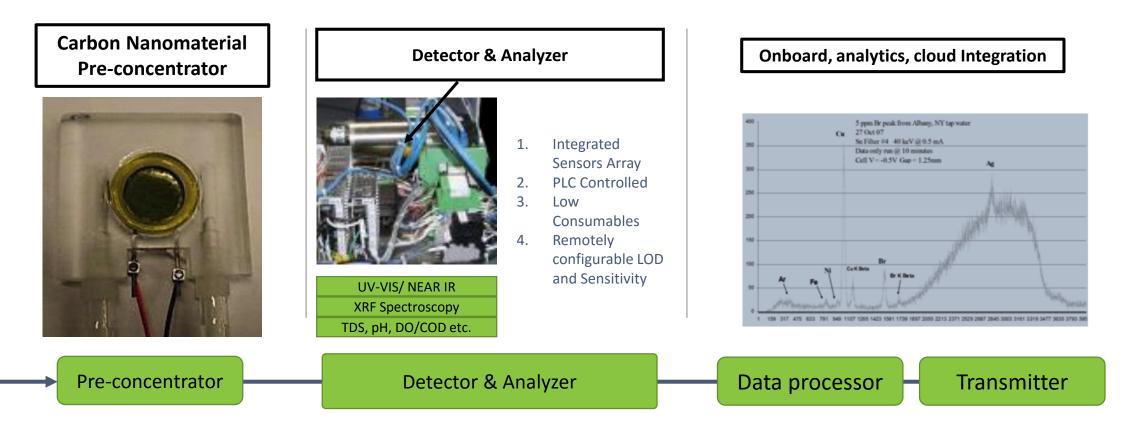
2016 Full scale product at customer test site in CA



**2015** Full scale product at customer test site in Spain

Aquas Confidential

#### **CDI System using Solar Power**







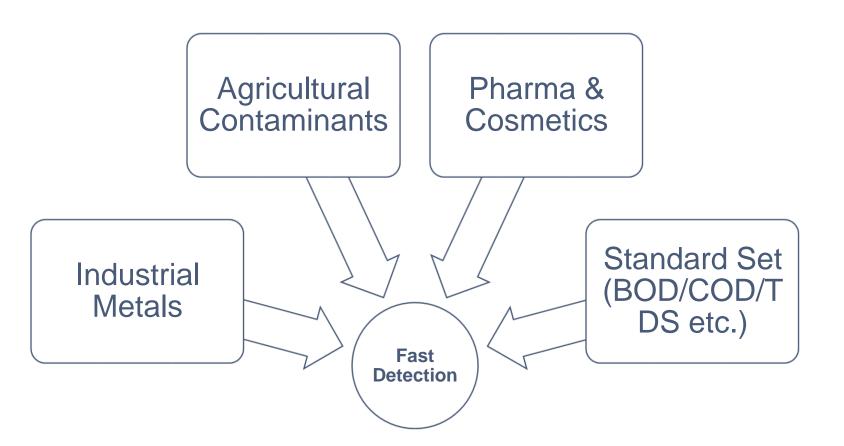

## CDI also used in heavy metal testing





- Pre-concentrator is the KEY innovation that enables this 24x7, on-site, parts per-billion (ppb) level measurements
- Self-calibrating system
- LOD and LOQ is increased many folds due to unique pre-concentrating and proprietary correlation algorithms

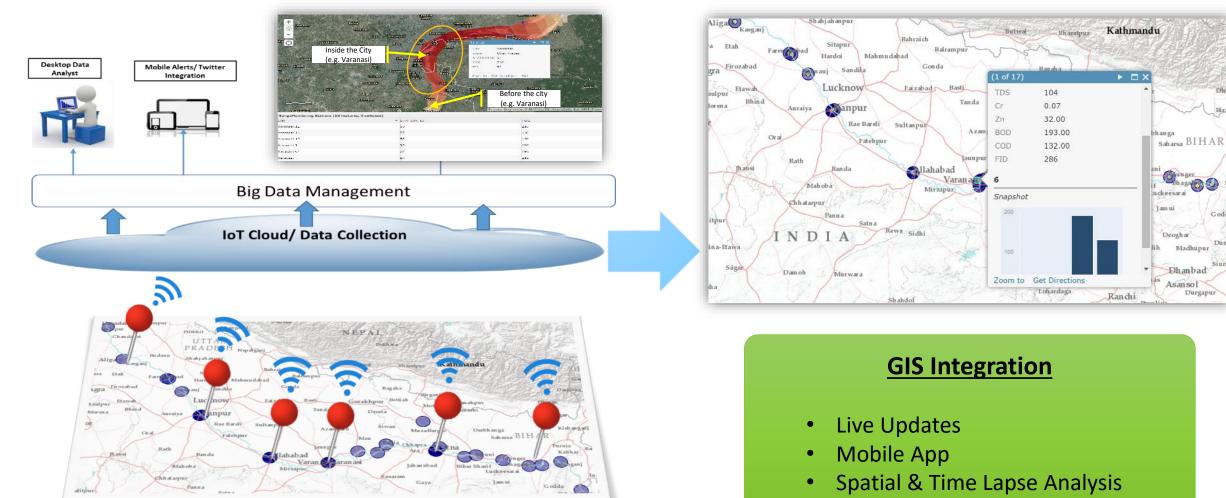
# Portable Smart Water Monitoring Solution for Ganga River






World's first system that can do on-site measurement of heavy metals (like Lead, Arsenic, etc.), drugs (antibiotics, hormones, etc) without expensive labs, in <u>Real-Time</u>, with <u>High Sensitivity</u>, <u>Integrated GIS</u> updates for autonomous monitoring Ganga Water Quality

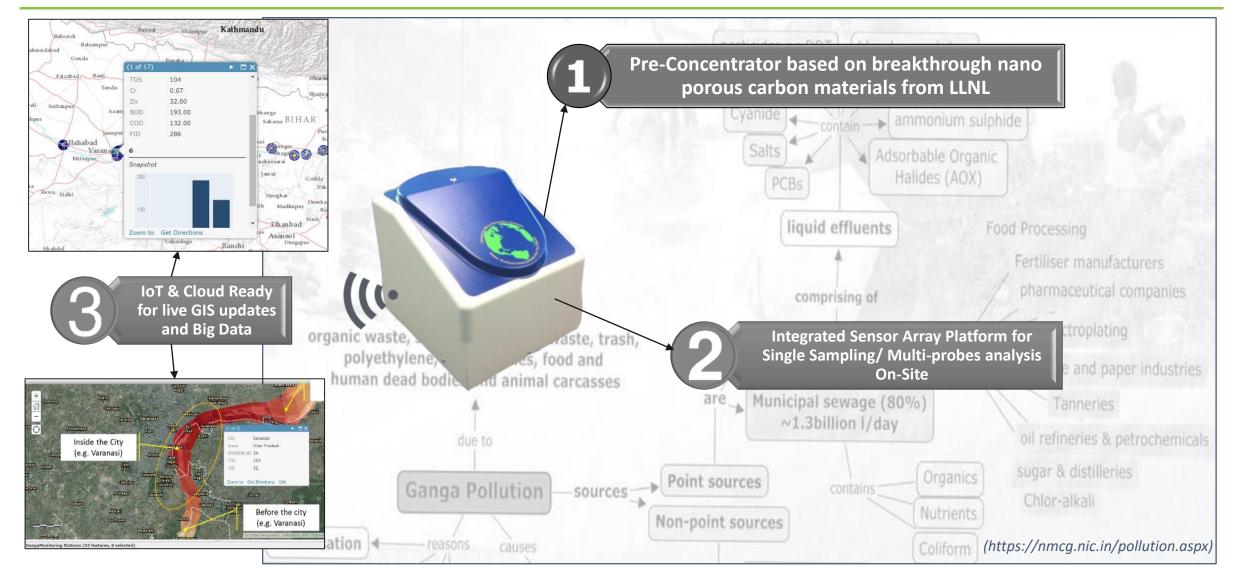
- 1. Product deployed and tested by government/ military, and water departments in Wisconsin and California States
- 2. Primarily targeted for military and remote use to quickly analyze water samples
- 3. Take up to 100 measurements per day as opposed to 1 per fortnight!


# Sensor Integration System can measure a wide range of pollutants



# End to End Solution for Automated System Operations




Live GIS, Alerts, Reporting, Big Data, and Crowd-sourcing



• Extrapolation and Triangulation

### Water Quality Monitoring





#### © 2015, Copyright Aquas Technologies Corp. | www.aquastechcorp.com



Sandip Chintawar

**Co-founder & CEO** 

sandip@aquastechcorp.com

www.aquastechcorp.com

# Aquas' Capacitive Deionization (CDI)

#### System

#### Ideal solution for non-traditional water sources



Ideally suited for brackish water treatment



TRL 7+ readiness: Already tested in field



Programmable, for removal of multiple contaminants\*



90%+ water recovery & 90% lower energy consumption



Ultra low waste/ brine discharge



Solar Power integration WITHOUT adding significant cost

\*Contaminants Removed:

- Nitrate
- Phosphates
- Chromium
- Arsenic
- Fluoride
- Lead
- Perchlorates
- Cadmium
- and more



#### Traditional CDI

- Usually uses high surface area Activated Carbon,
   Porous or Mesoporous Carbon Aerogel
- Most common designs use stack of electrodes making channels for water to flow between
- Typically consists of an Ion Exchange membrane to service as a charge barrier
- Contains a spacer element

#### Limitations of Traditional Design

- No enhanced ion-selective targeting removes dominant bulk ions more than trace contaminants (such as Boron etc.)
- Primary mechanism for charge separation is double-layer formation
- Low Capacitance, Activated Carbon is not very conductive
- Effective efficiency (mg of ion removed per sq.ft. of cell area) of removal of trace contaminants is much lower
- Ion Exchange membrane is expensive

# Aquas CDI Solution addresses current limitations

()

- Functionalized Carbon Aerogel: Targets specific ions. 5x to 10 x increase in effective removal efficiency of "trace contaminant of interest"
- Metal Doped Carbon Aerogel exhibits additional pseudo-capacitance. Nearly 10x increase in capacitance of the CDI cell
- No Ion Exchange membrane is required. *Cost reduction by elimination of expensive component*
- Flexible design options to meet high through-put requirements. Allows entry into mining, Oil & Gas (SAGD) market and more
  - Flow across design
  - Amorphous and Fluidized electrodes

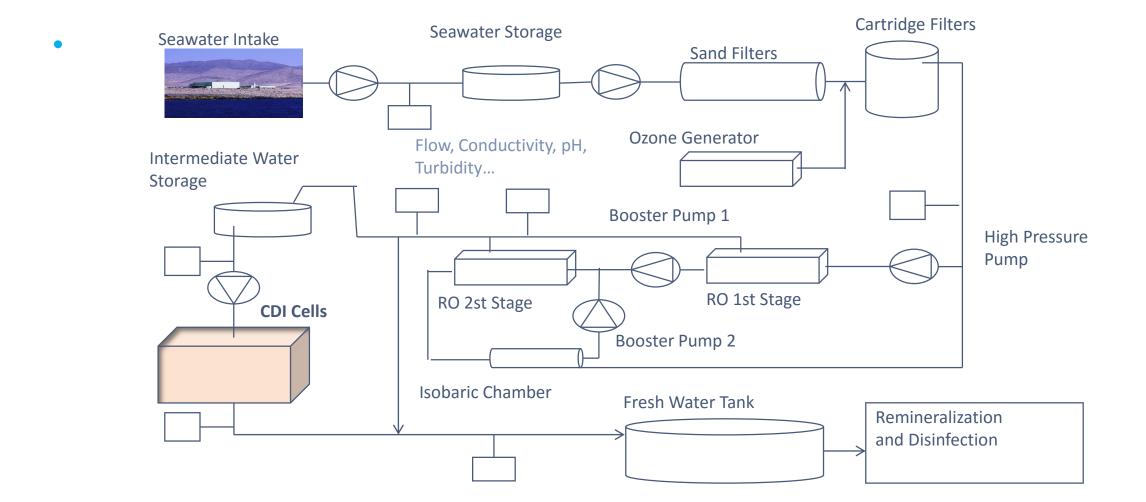
#### What can be monitored?



Standard Set:

- pH, TDS, Turbidity, etc.
- Oxygen (DO, COD, BOD) (20 parameters)
- Perchlorates, Nitrogen, Phosphates, etc.

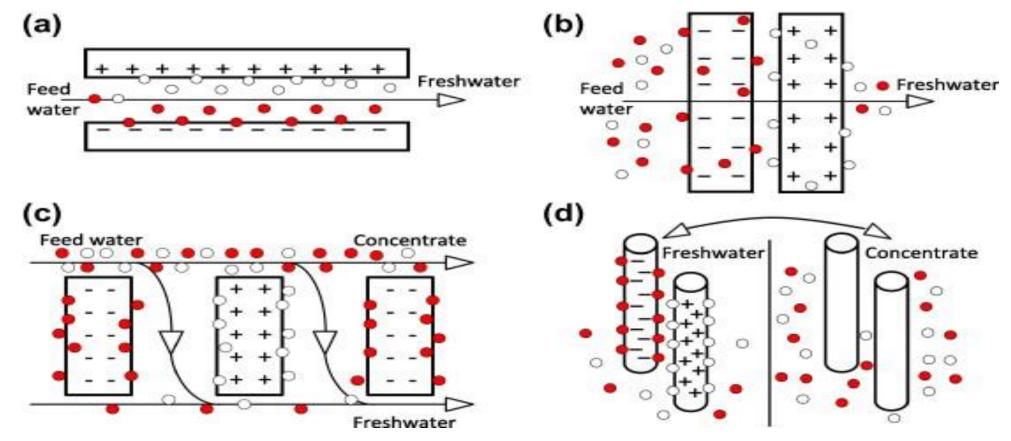
Heavy Metals and Industrial Pollution:


- Chromium, Arsenic, Lead, and other heavy metals (50+)
- Radio Active contaminants
- Toxins, Pharmaceutical, drugs, antibiotics, etc.

Endocrine Disruptors, sources of estrogen, testosterone etc.

- Typically found in cosmetics, and personal effects
- Usually flushed into toilets and drains, waste water treatment and recycling doesn't eliminate it completely

#### CDI-4-EEDSAL ES-USA project: the first hybrid CDI System for ENERGY EFFICIENT DESALINATION





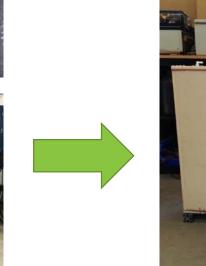

## **CDI** system geometries



. (a) Flow-by mode, (b) flow-through mode, (c) electrostatic ion pumping, and d) desalination with wires.



### Timeline of Aquas CDI Cell




#### **Product Development and Demonstration**











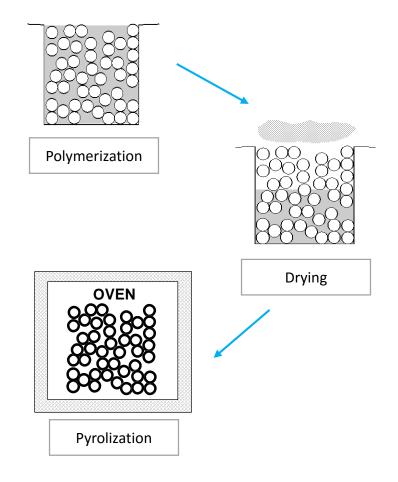
2013 Stanford University test cell

2014 Cell assembly and testing facility

**<u>2015</u>** Full scale product at customer test site in Spain

## Relative Ion Removal Capacity of Carbon Aerogel

| Bromide (Br)               | mg/L | 0.52  | 0.35   | 0.67   | 2.8   |
|----------------------------|------|-------|--------|--------|-------|
| Chloride (Cl)              | mg/L | 169   | 149    | 0.88   | 1     |
| Fluoride (F)               | mg/L | 0.07  | < 0.05 |        |       |
| Nitrate (NO <sub>3</sub> ) | mg/L | 18.64 | 6.47   | 0.35   | 5.5   |
| Sulfate (SO <sub>4</sub> ) | mg/L | 135   | 113    | 0.84   | 1.4   |
| Sodium (Na)                | mg/L | 103   | 102    | 0.99   | 0.08  |
| Potassium (K)              | mg/L | 2.5   | 2.7    | 1.08   |       |
| Arsenic (As)               | μg/L | 2.0   | 1.2    | 0.60   | 3.4   |
| Barium (Ba)                | μg/L | 120   | 43     | 0.36   | 5.4   |
| Chromium (Total<br>Cr)     | μg/L | 9.8   | < 1.0  | < 0.10 | > 7.6 |
| Cobalt (Co)                | μg/L | 106   | 5.2    | 0.05   | 8.0   |
| Nickel (Ni)                | μg/L | 3.3   | 2.8    | 0.85   | 1.3   |
| Selenium (Se)              | μg/L | 9.5   | 5.2    | 0.55   | 3.8   |
| Strontium (Sr)             | μg/L | 960   | 620    | 0.65   | 3.0   |
| Vanadium (V)               | μg/L | 5.2   | < 2.0  | < 0.38 | > 5.2 |
| Uranium (U)                | μg/L | 5.1   | < 1.0  | < 0.20 | > 6.8 |


- CDI is highly selective to ionic impurities (Strontium confirmed, cesium test planned), and suitable for removing hazardous ions out of potable water
- : treated to untreated molar fraction for species
- lons with are removed preferentially (marked with yellow in table)
- : reduction in concentration of species divided by reduction in concentration of chloride after treatment
- For example, while chloride ion concentration decreased from 169 to 149 mg/L (~12% reduction), cobalt changed from 106 to 5.2 µg/L (95% reduction). It means CDI is 8 times more selective to cobalt comparing to chloride, or
- Note that chloride itself is removed with 5-10x more selectivity comparing to sodium

Data from: Lawrence Livermore National Laboratory (LLNL), 2013 on New Carbon Aerogel materials (unfunctionalized)

### **Typical process for making Carbon Aerogels and Foams**



- Mix water-based reagents
- Curing / Polymerization at low temperature
- Drying / Supercritical Drying to remove water
- Pyrolysis to carbon burn off at high temperature under inert atmosphere

