on

Low Cost Multi Stage Water Purification System For Large Communities Powered By Dye Sensitized Solar Cells

SARVAJANIK COLLEGE OF ENGINEERING & TECHNOLOGY CHEMICAL ENGINEERING

At ISWATS 2016

Presented by: Mrs. Vaishali Umrigar Assistant Professor,SCET,SURAT

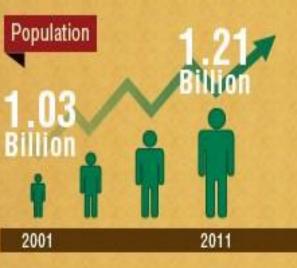
O

Prepared By: Mrs.Vaishali Umrigar Abhimanyu Rathi Vikas Mishra Parwathi Pillai

Contents

- Problems with Drinking Water in Large Communities and Rural Segments
- Our Proposed Solution for Potable Water
- Different Designs and the Final System
- Solar based Power System
- Overall Results Parameters, Designs and Costs
- Scope for Further Development
- Review

INDIA


India faces a water crisis that's been building for decades, and may soon reach a flash point

Alghanistan 🚗

1.340

Projected

2025

Yearly average per capita water availability (cubic meters)

,545

2011

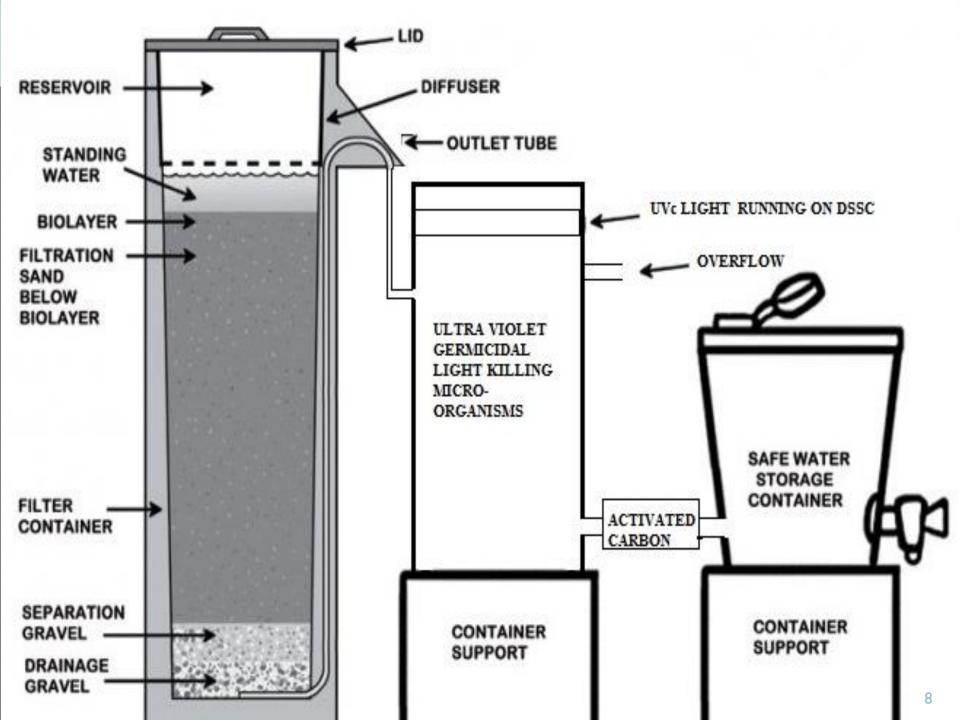
Depletion of groundwater is a concern, with 60% agriculture dependent on it

,816

The Problem

- Every year, nearly 6,00,000 children in India die of illnesses associated with unclean drinking water. In spite of this, 2 out of every 3 households still do not treat their drinking water and half of the rural water supply, where 70 percent of India's population lives, is routinely contaminated with toxic bacteria. [2]
- People are aware of the dangers of contaminated water, but usually do not have the means or convenience to obtain potable water. The fuel needed to boil water may not be affordable, a safe water source may not be an option at all and running a RO (reverse osmosis) system at home, may be both impractical in terms of wastage as well as economics. And then there is the increasing evidence on its effect on health. So most families continue to collect their water from contaminated sources or unreliable tap water, concerned about the safety but unable to do much about it.

The Big Question


• How can we create a *Water Purification* System that *cheaply* and *portably* purifies water for rural and underprivileged large communities?

Criteria

- The apparatus must be portable.
- It must be made of cheap materials hence costing very low.
- It must be self sufficient.
- It must be durable.
- The materials must be locally available.
- It must be easy to fix if problems arise.
- It must be able to resist different climates.
- Local villagers must be able to maintain and operate it.
- It must be easy to deploy, and accessible for everyone.
- In contrast to the use of membranes, it must have a high shelf life

Our Design - A Medley of Indigenous and Advanced Technologies

- <u>Physical Filtration</u>: Graphite Coated (Super Sand) Sand Bed working on the principle of Bio-Sand Filtration
- <u>Arsenic Removal</u>: Use of Rusted Iron Nails
- <u>Killing of the Micro-organisms</u>: Ultra Violet Germicidal Light (UVc)
- <u>Filtering the Dead Micro-organisms</u>: Naturally Prepared Activated Carbon
- <u>Bacterial Recovery</u>: Bio-Ceramics
- <u>Power System</u>: Dye Sensitized Solar Cells

Final Design (only BSF)

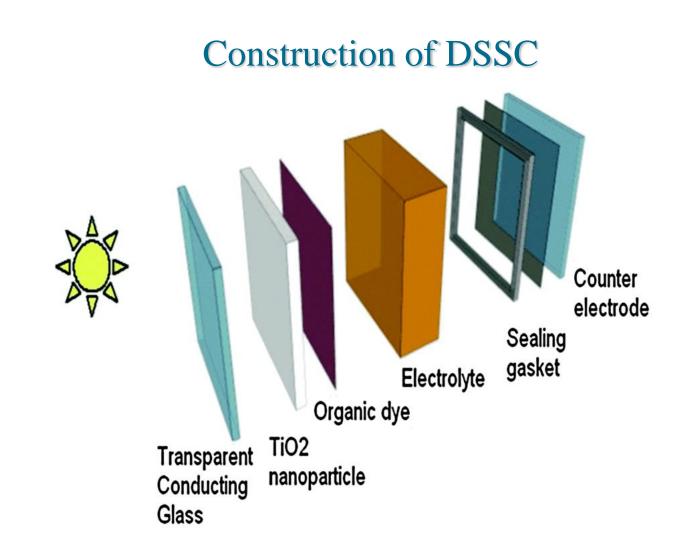
Final Design (Scaled Down Model)

Some Components

Diffuser

Interior of BSF Section

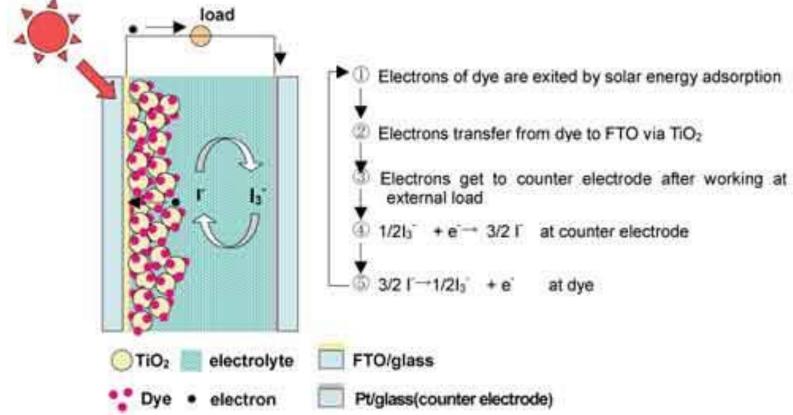
Activated Carbon via Natural Ways



Coconut Shells

Activated Carbon

The Power System: DSSC

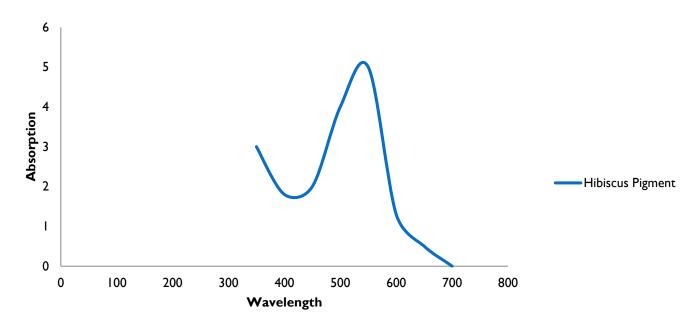

- Dye Sensitized Solar Cells (DSSC) works similarly as a leaf on a plant [3].
- The chlorophyll dye in a leaf absorbs solar energy and converts it into chemical energy (starch).
- The principle of power generation of DSSC is very similar to that of photosynthesis in plant.
- DSSC takes solar energy and converts into electrical energy.
- DSSC often referred as artificial photosynthesis.

'On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology' in Physical Chemistry Chemical Physics, Issue 15, 2014

Mechanism of DSSC

From an online article by Michael Berger, Nanowerk LLC

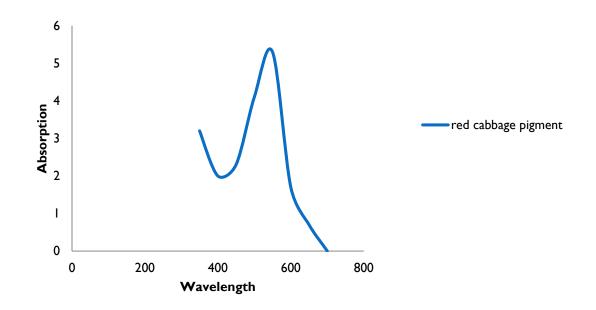
Optical Measurement of Dyes Solutions


 The optical measurement was made by using
Spectrophotometer for dyes prepared (Red Cabbage, Hibiscus, Lemon Leaves and their combinations)

[4]

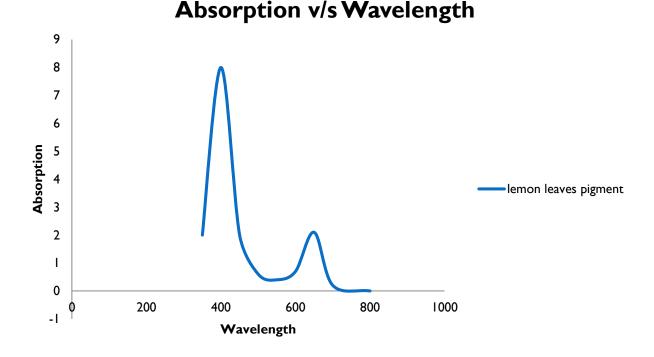
Hibiscus Pigment

• Hibiscus pigment: optical absorbance for hibiscus shows max absorption peak in the visible region at the 560 nm wavelength

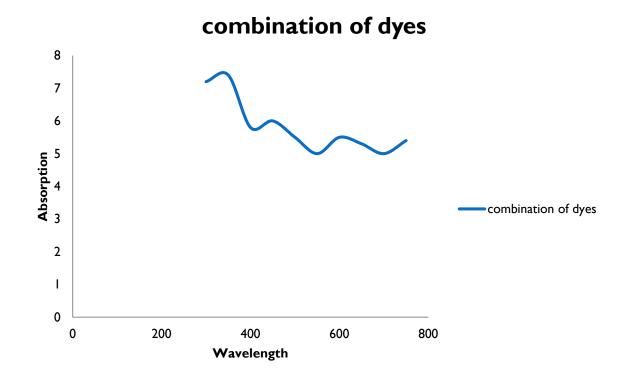

Absorption v/s Wavelength

Red Cabbage Pigment

• Red cabbage pigment: optical absorbance for hibiscus shows max absorption peak in the visible region at the 550 nm wavelength


Absorption v/s wavelength

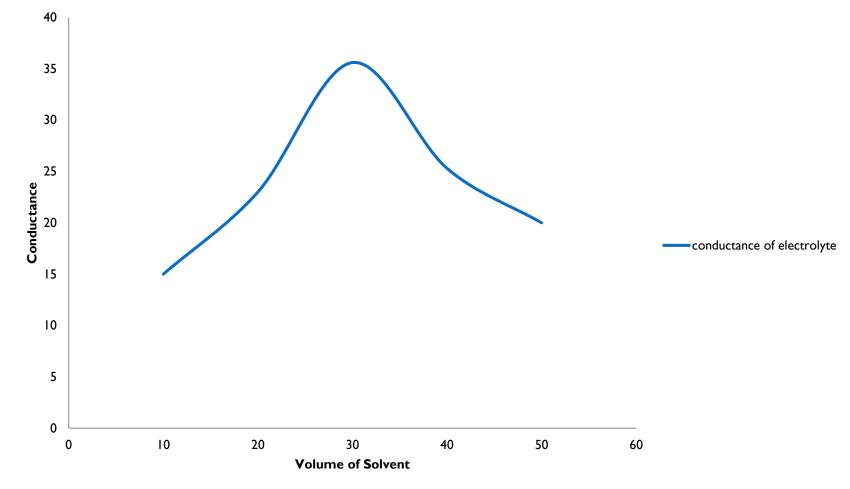
Lemon Leaves Pigment


• Lemon leaves pigment: optical absorbance for hibiscus shows max absorption peak in the visible region at the 400 nm and 650 nm wavelength.

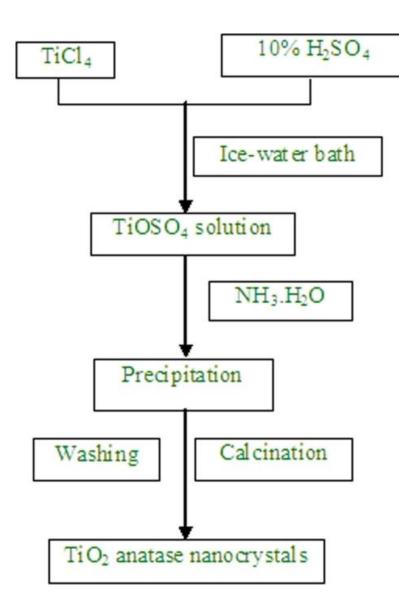
Combination Of Dyes

 Combination of dyes: optical absorbance for hibiscus shows max absorption peak in the visible region at the 330nm, 450nm & 600nm wavelength.

Electrolyte Preparation

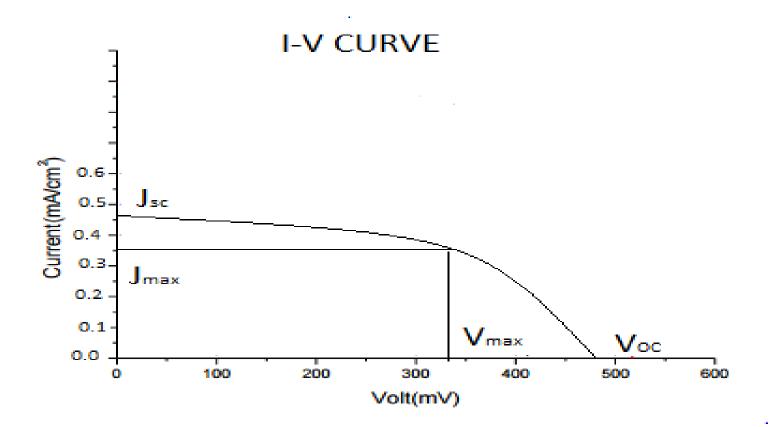

[5]

• Add 6 gm of potassium iodide to 30 ml of solvent and stir for 15 minutes. Then add 2 gm of iodine. Stir and store in dark bottle.



Volume of Solvent v/s Conductance

Preparation of TiO2



Experimental Setup for Preparation of TiO₂

CURRENT VOLTAGE CURVE (For Area = 1 sq.cm.)

[7]

Final Results for DSSC

	Voc (mV)	JSC (mA)	FRICTION FACTOR	EFFICIENCY (%)
Dyes				
HIBISCUS	490	0.45	0.55	1.22
RED CABBAGE	0.70	530	0.78	2.89
LEMON LEAVES	510	0.66	0.54	2.69
COMBINATIO N	688	1.21	0.73	6.07

SOLAR CONVERSION EFFICIENCY

The solar conversion efficiency of DSSC can be estimated by :

$$\eta = \frac{\text{JSC} \times \text{VOC} \times \text{FF}}{\text{Pin}}$$
$$= \frac{0.45 \times 490 \times 0.52}{100}$$

= 1.14%

FF =	Pm	ax
	$J_{SC} \times$	VOC
	=	0.35 × 330
		0.45×490

$$= 0.52$$

[8]

The Panels

Results Based On Various Water Sources

[9]

PARAMETERS	METHOD	UOM	SCET COLLEGE WATER INPUT	SCET COLLEGE WATER OUTPUT	HOSTEL WATER INPUT	HOSTEL WATER OUT PUT
РН	IS-3025 (PART1)	-	8.1	8.5	8	8.5
CONDUCTIVITY	ASTMD1125-95	µs/cm	508	402	829	664
TURBIDITY	IS-3025 (PART-10)	NTU	0.5	0.05	0.6	0.06
CHLORINE	IS-3025 (PART-32)	ppm	50	4	107	9
TOTAL HARDNESS	IS-3025 (PART-21)	ppm	153	141	180	157
ALKALINITY	IS-3025 (PART-21)	ppm	59	70	68	81
TSS	IS-3025 (PART-17)	ppm	0	0	0	0
TDS	IS-3025 (PART-16)	ppm	288	101	450	158
COD	ALPHA 5220-D	ppm	0	0	0	0
ARSENIC	IS-3025 (PART-13)	ppm	0	0	0	0

Results Based On Various Water Sources

[9]

PARAMETERS	METHOD	UOM	RELIANCE REFINERY WATER INPUT	RELIANCE REFINERY OUTPUT	JAMNAGAR WATER INPUT	JAMNAGAR WATER OUTPUT	TAPI WATER INPUT	TAPI WATER OUTPUT
РН	IS-3025 (PART1)	-	7.5	7.8	7.9	8.3	8.0	8.4
CONDUCTIVITY	ASTMD1125- 95	μs/c m	28100	16869	366	256	516	361
TURBIDITY	IS-3025 (PART-10)	NTU	20	4	0.7	0.1	0.46	0.05
CHLORINE	IS-3025 (PART-32)	ppm	9000	3125	5	1.2	46	3.5
TOTAL HARDNESS	IS-3025 (PART-21)	ppm	3143	2829	104	91	145	132
ALKALINITY	IS-3025 (PART-21)	ppm	498	593	84	99	61	73
TSS	IS-3025 (PART-17)	ppm	12	4.2	0	0	0	0
TDS	IS-3025 (PART-16)	ppm	18000	15325	220	77	310	109
COD	ALPHA 5220- D	ppm	45	6.75	0	0	0	0
ARSENIC	IS-3025	ppm	0.03	0.002	0	0	0	0

Cost Comparison

WATER FILTER	COST (Rs)	WATER FILTER	COST (Rs)
Aqusana 3 Stage Under Counter	10819	Eurekha Forbes Aquasure Prime	8244
Water Chef U9000	19584	Kent ACE	19000
Apec Water RO 50	12374	Hindustan Unilever Marvello RO+UV	15633
Kenmore Reverse Osmosis System	10570	Reliant Typify	13990
Pelican Pro 6 Stage RO	21701	Reliant Troops	14990
Multi Pureaqua RO	37308	Reliant Previous	16990
GE Reverse Osmosis Filtration System	6837	Eurekha Forbes Aquaguard Reviva	13990
Aqua Pure Ap RO-5500	24834	TATA Swach	1150
Kinetico Aqua Kinetic	23000	Eurekha Forbes Aquaguard Total SENSA	18990
Hindustan Unilever Pureit Marvella UV+ Cold	14590	Eurekha Forbes Aquaguard Invisipure RO	13500
Our Proposed Water Purification System		Model for small families Scaled up model for 20-25 people (BSF + UV) Scaled up model for 20-25 people (BSF Only)	1200 7000 3500

Comparison Of Different Water Parameters (% Reduction)

[11]

Parameters	Aquasana Water Filter	Kent RO	Merlin RO	Our Water Purifier	Millennium RO System
Water Temperature ⁰ C	10-40	10-40	10-40	10-40	10-40
Chlorine Content (Mg/Lit)	94%	94%	90%	92%	92%
Turbidity (NTU)	94%	94%	89%	95%	95%
TDS (Mg/Lit)	60%	73%	85%	65%	73%
Hardness (Mg/Lit)	66%	66%	72%	65%	65%
Iron	95%	96.3%	93.7%	96%	95%
Arsenic	94%	98.7%	94.6%	99%	98%

Effect against Microbes [12]

The biosand filter has been studied in the field and in labs. It has been shown to remove the following from contaminated water:

- •Up to 100% of helminthes (worms)
- •Up to 100% of protozoa
- •Up to 98.5% of bacteria
- •70-99% of viruses

•Considered as one of the best filters to fight against *E.Coli Bacteria* – the largest cause of diarrhea globally

Scope for Further Development

• We are still working on improving the efficiency of the DSSC Panels and it's designs in order to run the UV Light.

- The pH needs to be reduced. So we are working on some new ways of creating a robust pH-neutralizer.
- We are in talks with several incubators and accelerators regarding seed funding and taking the project forward. We have also started with a geographical survey as to what our exact markets in India are so that a bigger picture can be summed up.

Review

- By using all our techniques, we have managed to get the outlet water quality well under the limits of Indian Standard Specifications for Drinking Water (IS: 10500).
- The use of DSSC in our proposed system makes it self-efficient. The result is a very low cost water purification system which is not only easy to use and maintain but is also highly efficient in quality and looks after the drinking water problems of the masses, especially the people living in rural areas and the third world countries.

References

- 1. Water Crisis around the World by the Maps of the World, BBC
- 2. Rural Water Crisis in India, UN Health and Sanitation Department, 2006
- 3. Michael Gratzel, *Dye Sensitized Solar Cells Rival Conventional Cell Efficiency*, Science Daily, July 2013
- 4. A. Mounir, I. Ahmad, A. Wael Doubal, *Study of Natural Dyes Properties as Photo Sensitizer for DSSC*, Journal of Electron Devices, Vol. 16, 2012 pgs. 1370-1383
- 5. Jain & Jain, Engineering Chemistry Ed.15, pgs.682-686
- 6. S. Mahshid, M. Askari, M. Sasani Ghamsari, *Synthesis of Titanium Dioxide nanoparticles by hydrolysis and peptization of titanium isopropoxide solution*, Journal of Materials Processing Technology, 2007 pgs. 296-300
- 8. Khatre J.S., *Elements of Electrical Engineering Ed. 2*, 2003 pgs. 205-209
- 9. H. Kohjiro, A. Hironori, *Dye Sensitized Solar Cells*, AIST, Tsukuba, Japan
- 10. Tests conducted at Reliance Jamnagar Refinery, Jamnagar Gujarat
- 11. Product Catalogue for various Water Purifiers available at their websites
- 12. Data collected from Nilkanth RO Water Services, Surat
- 13. Journal on Biosand Filtration, Centre for Affordable Water and Sanitation Technology, Canada

References

- 15. Estimated with data from Diarhhoea: Why children are still dying and what can be done. UNICEF, WHO 2009
- 16. Estimated with data from WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation. (2012). Progress on Sanitation and Drinking-Water, 2012 Update.
- 17. World Health Organization (WHO). (2008). Safer Water, Better Health: Costs, benefits, and sustainability of interventions to protect and promote health; Updated Table 1: WSH deaths by region, 2004.
- 18. International Telecommunication Union (ITU). (2011). The World in 2011 ICT Facts and Figures
- 19. United Nations Population Fund (UNFPA). (2011). State of World Population 2011, People and possibilities in a world of 7 billion
- 20. UN Water. (2008). Tackling a global crisis: International Year of Sanitation 2008
- 21. United Nations Development Programme (UNDP). (2006). Human Development Report 2006, Beyond Scarcity: Power, poverty and the global water crisis
- 22. From an online article by Michael Berger, Nanowerk LLC available at http://www.nanowerk.com/spotlight/spotid=321.php
- 23. Sreeprasada T. S., Gupta S.S., Maliyekkalb S. M., Pradeep T. 2012, 'Immobilized graphene-based composite from asphalt: Facile synthesis and application in water purification' in Journal of Hazardous Materials 246–247 (2013) 213–220 Elsevier pg. 214. Research Project carried out at Indian Institute of Technology, Chennai.

References

- 24. ACS Applied Materials and Interfaces; Engineered Graphite Oxide Materials for Application in Water Purification
- 25. Ultraviolet Light Disinfection in the Use of Individual Water Purification Devices, Technical Information Paper # 31-006-0211, US Army Public Health Command
- 26. Drinking Water Specifications, IS 10500: 1991, Edition 2.1, 1993-01, Bureau of Indian Standards
- 27. Knovel Online Library, IChemE, UK
- 28. Journal of Environmental Health; A Novel Technology to Improve Drinking Water Quality Using Natural Treatment Methods in Rural Tanzania
- 29. Journal of Photochemistry and Photobiology and Photochemistry Reviews (Volume 4)
- 30. Gratzel, M. Dye sensitized solar cells. J.Photochem.Photobiol.
- 31. Greg P. Smestad and Michael Gratzel. Journal of Chemical Education

THINK ABOUT WHAT YOU COULD SAVE WHEN YOU SAVE WATER.

Questions???

Design Comparison

Water Filter	Easy-to- change Filters	DIY Installation	Replacement Notifications	Number Of Faucet Options	Width (Inches)	Depth (Inches)	Height (Inches)	Storage Capacity (liter)	Power Required (Watt)
Aqusana 3 Stage Under Counter	Yes	Yes	Yes	3	12	4.25	9	5	25
Water Chef U9000	Yes	Yes	Yes	4	6	8	9	6.7	25
Apec Water RO 50	Yes	Yes	-	1	16	5.25	17.5	4	40
Kenmore Reverse Osmosis System	Yes	Yes	Yes	1	15	16	15	10	60
Pelican Pro 6 Stage RO	Yes	Yes	-	3	12	4.75	14.5	5	30
Multi Pureaqua RO	Yes	-	-	1	15.75	5.25	14.25	-	30
Eco Water ERO 375	Yes	Yes	Yes	5	12.5	4.25	17	8	45
Our Proposed Water Purifier	Yes	Yes	No	1	50	24	32	75	11

Design Comparison

				0	-				
Water Filter	Easy-to- change Filters	DIY Installation	Replacement Notifications	Number Of Faucet Options	Width (Inches)	Depth (Inches)	Height (Inches)	Storage Capacity (liter)	Power Required (Watt)
Kinetico Aqua Kinetic	Yes	Yes	-	1	15	5	21	6	-
Eurekha Forbes Aquaguard Invisipure RO	Yes	-	Yes	1	290	185	410	5	35
Hindustan Unilever Marvello RO+UV	Yes	Yes	-	1	456	154	567	10	-
Eurekha Forbes Aquasure Prime	Yes	-	Yes	1	281	198	413	4	25
Kent ACE	Yes	-	-	1	380	270	505	7	60
Aqua Pure Ap RO- 5500	Yes	Yes	-	1	15	6	15	7	30
Our Proposed Water Purifier	Yes	Yes	No	1	50	24	32	75	11

Design Comparison

Water Filter	Easy-to- change Filters	DIY Installation	Replacement Notifications	Number Of Faucet Options	Width (Inches)	Depth (Inches)	Height (Inches)	Storage Capacity (Liter)	Power Required (Watt)
Reliant Typify	Yes	Yes	Yes	1	300	290	410	9	30
Reliant Troops	Yes	Yes	Yes	1	280	270	395	12	30
Reliant Previous	Yes	Yes	Yes	1	175	325	525	12	30
Kent Grand Plus	Yes	Yes	Yes	1	260	410	520	8	-
Eurekha Forbes Aquaguard Reviva	Yes	-	Yes	1	320	275	410	8	25
TATA Swach	Yes	-	No	1	300	282	572	18	No
Eurekha Forbes Aquaguard Total SENSA	Yes	Yes	Yes	1	344	322	473	9.5	40
Our Proposed Water Purifier	Yes	Yes	No	1	50	24	32	75	11