Apatites based Nanoceramics: Cobalt based waste water treatment

> Dr. Rajendra S. Khairnar School of Physical Sciences, S.R.T.M. University, Nanded-431606 Maharashtra, INDIA.

Contents

Introduction

- Apatites
- Hydroxyapatite (HAp)
- Applicability of HAp for cobalt adsorption
- * Results
- Conclusion

Blue planet

Heavy metals in water

Apatites-Hydroxyapatite (HAp)

Properties of HAp

- ✤ Biocompatible
- ✤ Bioactive
- ✤ Non-toxic
- Non-inflammatory
- Good ionic conductivity
- Good adsorption capacity
- Large surface area

Application of HAp

Purification of Biological

molecules

- Catalyst
- biomaterial
- Gas-sensor
- Bioceramic Coatings

Synthesis of HAp

Characterizations

AFM

Figure- AFM images of HAp (a) 1 μm and (b) 400 nm

SEM

Figure- (a) SEM images of HAp (1 μm) and (b) EDS spectrum

XRD

TG/DTA

Cobalt adsorption experiment

- Batch experiment study used
- The concentration of cobalt is determined using UV-Vis spectrometer @ 511 nm
- Formulae used
- 1) % Removal = [(Ci-Ce)/Ci]*100
- 2) Max. Adsorption capacity (mg/g) qe = (V/W) * (Ci-Ce)

Where, Ci –initial cobalt concentration (mg/l) Ce-cobalt solution concentration after adsorption (mg/l) V-Volume of cobalt solution (l) W-Weight of HAp adsorbent (gm)

Experiments

- Effect of initial concentration
- Effect of HAp dosage
- Effect of contact time

Figure-Effect of HAp dosage

Figure-Effect of contact time

Post adsorption characterizations

Figure -FTIR spectra of the (a) synthesized HAp nanopowder and (b) HAp after Co sorption

Figure- AFM of HAp after Co sorption at magnification (a) $1\mu m$ and (b) 400 nm

Figure - (a) SEM image and (b) EDAX spectra of HAp after Co sorption

Isotherm models

Figure-Langmuir isotherm

Figure- Freundlich isotherm

Kinetic models

Figure-First order kinetic model Figure-Second order kinetic model

Parameters of Isotherm

Langmuir isotherm			Freundlich isotherm		
q ₀	b	R ²	k _f	1/n	R ²
1.21	0.000366	0.78	0.3019	0.6910	0.97

Parameters of Kinetic models

First order			Second order		
k ₁	q1	R ²	k ₂	q ₂	R ²
0.2382	126.74	0.87	0.02636	127.06	0.99

Conclusions

- The XRD analysis suggests the Hexagonal crystal structure of HAp.
- ✤ TGA/DTA shows the HAp is thermally stable up to 1000⁰ C.
- The functional groups, Surface morphology and elemental analysis of HAp and Co-HAp are visualized by FTIR, AFM and SEM/EDAX respectively.
- Increase in the initial cobalt concentration and contact time increases the cobalt adsorption capacity.
- The kinetic data fitting results showed that the adsorption of cobalt on HAp is followed by pseudo second order kinetic model as the R² value equal to 0.99.
- The adsorption process is very fast, it attains the equilibrium in nearly 30 min.
- The max. Adsorption capacity is 1.21 mg/gm.

Water is the driving force of all Nature

Thank you.