Simultaneous removal of COD, phenol and ammoniacal nitrogen from industrial wastewaters

> Dr. A.Gangagni Rao Senior Principal Scientist, BEES IICT, Hyderabad

Industrial sectors: Wastewater with Ammonical Nitrogen(AN), phenol & COD Effluent

- Bulk drug industry
- Petrochemical industry
 - Petroleum Refinery
 - Steel plants
 - Chemical industry

Wastewaters from these industries characterized by high concentration of COD, ammoniacal nitrogen and phenolic compounds

Ammoniacal nitrogen (AN) and phenols are the most hazardous water pollutants discharging into water receptors through industrial effluents along with COD

NEGATIVE EFFECTS OF AN (Eutrophication)

- Eutrophication is a result of nutrient pollution
- Eutrophication generally promotes excessive plant growth
- In aquatic environments, enhanced growth of choking aquatic vegetation or algal blooms disrupt normal functioning of the ecosystem, causing problems such as a lack of oxygen in the water, needed for fish and other aquatic life to survive. The water then becomes cloudy, colored a shade of green, yellow, brown, or red.

NEGATIVE EFFECTS OF AN (Soil Acidification)

- When ammonia reaches the soil surface, it usually reacts with water in the soil and is converted into its ionic form, ammonium (NH4+) and absorbes to the soil
- The ammonium in the soil eventually disassociates or is nitrified into nitrite (NO2-) or nitrate (NO3-) by nitrifying bacteria, releasing H+ ions into the soil (3, 4)
- The surplus H+ ions eventually lead to the formation of an acidic soil environment.

REMOVAL OF AMMONIACAL NITROGEN FROM INDUSTRIAL WASTEWATERS

- PCB Norms for disposal :
- AN = 50 ppm
- Phenol = 0.5 ppm
- COD = 250 ppm

Present practices

- Physico-chemical
- Chemical Precipitation
- Ion exchange
- Catalytic process
- Nitrification & De-nitrification

Concerns

- Cost prohibitive
- Energy intensive
- Generation of secondary pollutants
- Could not PCB Norms

Mechanism

ANAMMOX PROCESS PROCESS

Anammox- anaerobic ammonia oxidation

Biological Nutrient Removal processes

- Anaerobic Ammonia Oxidation
 •
- SHARON process
- SHARON-Anammox Combined •
- CANON process

- Johannesburg Process
- 5 stage Bardenpho process
- Modified University of Cape Town (MUCT)

Simultaneous removal of COD, phenol and ammoniacal nitrogen from industrial wastewaters -MICROBIAL PROCESS

Existing Effluent Treatment plant at Bulk drug Industry

Existing schematic diagram for Effluent Treatment plant

Development of Inoculum

: Isolation, Enrichment, Characterization and Seeding

Pilot Scale Studies

PROCESS CONFIGURATION Air stripping followed by sequential aerobic , anoxic & anaerobic cyclic process with industrial effluent

Critical aspects Feed to recycle ratio pH management F/M Ratio Adaptation of microbial consortia HRT in each phase

Initial characteristics of industrial waste water Case-I

Parameter	Sample
pН	7.8
TS (%)	1.7
VS (%)	0.77
COD (mg/l)	3,900
Ammoniacal nitrogen (mg/l)	150
Phenol (mg/l)	145
VFA (mg/l)	3,607
Alkalinity (mg/l)	1,000
Sulfide (mg/l)	-
sulfate (mg/l)	1.67

Results: Case-I

Cycles	1 st Cycle	2 nd Cycle	3 rd Cycle	4 th Cycle
Aerobic (%)	22	24	25	22
Anoxic (%)	42	45	48	49
Anaerobic (%)	50	53	56	60

Results summary: Case-I

Parameters	Initial	Final	variation
	(mg/lit)	(mg/lit)	
рН	7.5	7.2	-
COD	3900	585	85 % Reduction
Ammoniacal Nitrogen	150	60	60 % Reduction
Phenol	145	36	75 % Reduction

HRT=1 Day

Initial characteristics of industrial waste water Case-II

Characteristics	
pH	6.5
TS (%)	0. 19
TS (mg/L)	1910
VS (%)	0.12
VS (mg/L)	1205
Ammonia (kjeldahl) (mg/L)	240
Moisture (%)	99
COD (mg/L)	41,000
Alkalinity (mg/L)	1600
VFA (mg/L)	2069
Nitrate(mg/L)	260
Nitrite	-
Sulphite (SO ₃)(mg/L)	10
Sulphate(S0 ₄) (mg/L)	87

Results: Case-II

Cycles	1 st Cycle	2 nd Cycle	3 rd Cycle
Aerobic (%)	31	33	37
Anoxic (%)	37	42	43
Anaerobic (%)	62	62	62

Results summary: Case-II

Parameters	Initial	Final	variation
	(mg/lit)	(mg/lit)	
рН	4.3	7.1	-
COD	42,000	3200	92 % Reduction
Ammoniacal Nitrogen	224	84	62 % Reduction

HRT=1 Day

Oxygen requirements

Oxygen consumption

• 0.0025 g/g of COD

degradation

- 0.0024 g/g of
 AN degradation
- 0.0024 g/g of

Phenol

degradation

Total Oxygen requirement =0.155/63.25=0.0024 g/g of substrate degradation

 Simultaneous removal of COD, phenol and ammoniacal nitrogen from industrial wastewaters

THINK GLOBALLY....

