

Importance and Methods of Disinfection of Recycled Waste Water

Alfaa UV

indsales@alfauv.com

http://www.alfauv.com

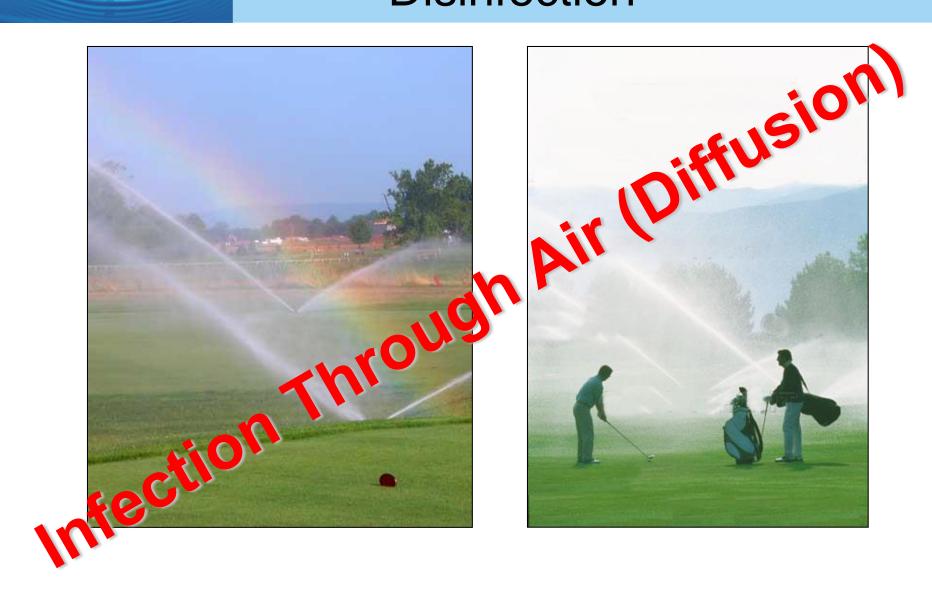
Phone: +91-22-66612300

The Need for Water Reuse

- Water is a finite resource.
- It is becoming increasingly more expensive.
- Water scarcity is a real issue.
- Heavy irrigation and landscaping demands.

Wastewater reuse requires effective measures to protect public health and to ensure that the impact on the environment is sustainable.

- Typical tertiary treated wastewater samples (before disinfection) contain coliform counts in the range of 10⁵ to 10¹² CFU / 100 mL.
- On average, this is equal to more then 1 lac colony forming units per 100 mL of the sample.
- Therefore, while the tertiary treated water might appear transparent and clear to look at, it contains an abundance of disease causing microorganisms that must be thoroughly disinfected before use.



Microorganisms Typically Present in Wastewater

Organism	Disease Caused	Organism	Disease Caused
Bacteria		<u>Helminths</u>	
Escherichia coli	Gastroenteritis	Ascaris lumbricoides	Ascariasis
Leptospira (spp.)	Leptospirosis	Taena solium	Taeniasis
Salmonella typhi	Typhoid fever	Trichuris trichiura	Trichuriasis
Salmonella (=2100 serotypes)	Salmonellosis		
Shigella (4 spp.)	Shigellosis (bacillary dysentery)		
Vibrio cholerae	Cholera		
<u>Protozoa</u>		<u>Viruses</u>	
Balantidium coli	Balantidiasis	Enteroviruses (72 types) e.g., polio echo and coxsackie viruses	Gastroenteritis, heart anomalies, meningitis
Cryptosporidium parvum	Cryptosporidiosis	Hepatitis A virus	Infectious hepatitis
Entamoeba histolytica	Amebiasis (amoebic dysentery)	Norwalk agent	Gastroenteritis
Giardia lamblia	Giardiasis	Rotavirus	Gastroenteritis

Infection Through Cuts and Wounds

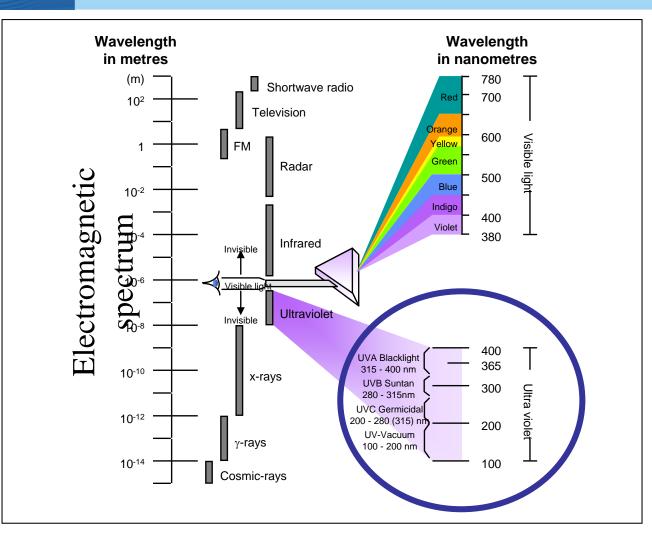
Water Reuse Guidelines

- In India, there are currently no unified norms or guidelines for the unrestricted reuse of effluent.
- Therefore for practical purposes a good set of guidelines to follow would be of the US EPA which presently regulates effluent quality limits and wastewater treatment processes for unrestricted reuse applications.
- "Unrestricted Reuse" refers to the use of recycled wastewater in applications where human contact is possible.

Water Reuse Guidelines

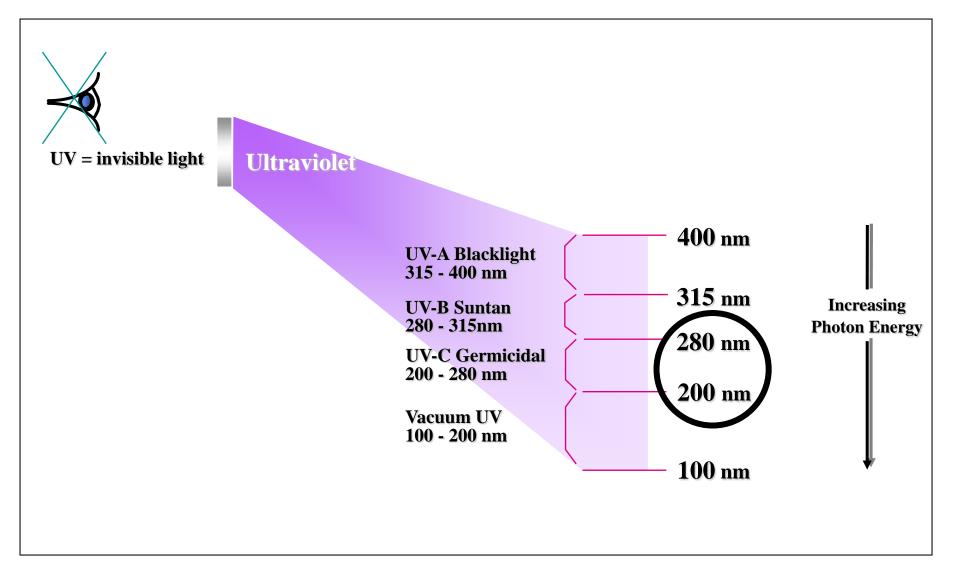
State	Irrigation of Raw Food Crops	Indicator / 100 ml	Turbidity	TSS
California	Yes	≤ 2.2 TC 7 day median	≤ 2 NTU	20 – 30 mg/L
Florida	No	Non Detectable FC 75% samples	≤ 2 NTU	≤ 5 mg/L

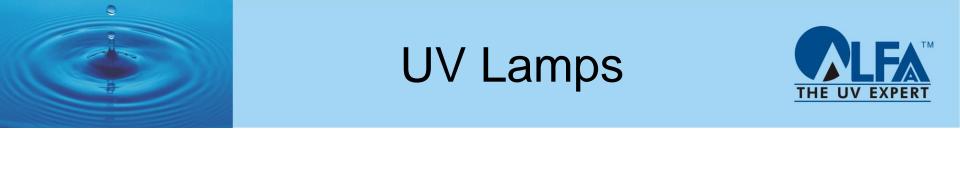
Regulations for Unrestricted Reuse Applications (Crook 1996, US EPA 1992)

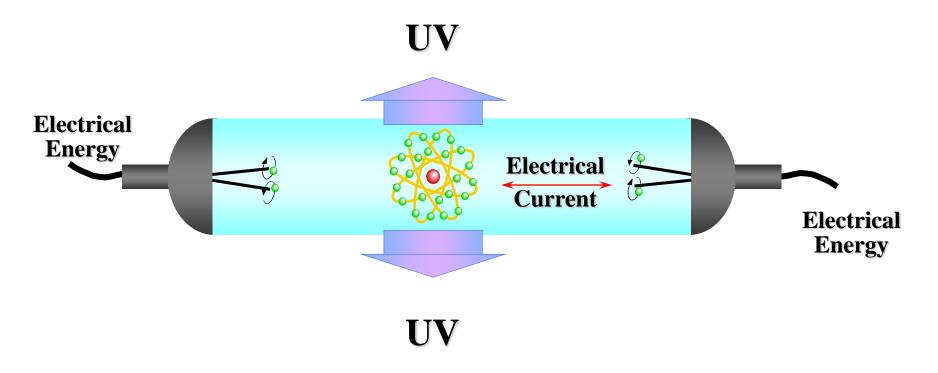


UV is the **only** technology which can provide the **high level of disinfection** required (in a simple and cost effective manner) so that the water can **safely** be reused.

The Light Spectrum




Alfaa ultraviolet water purifiers incorporate ultraviolet light energy to eradicate microbiological contamination.



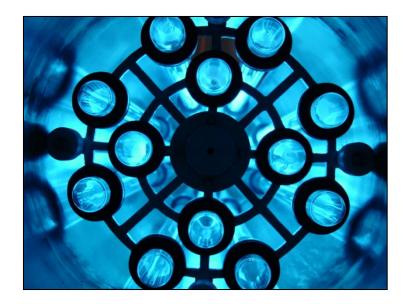
UV Spectrum

The UV lamp emits powerful ultraviolet light energy at a wavelength of 253.7 nm.

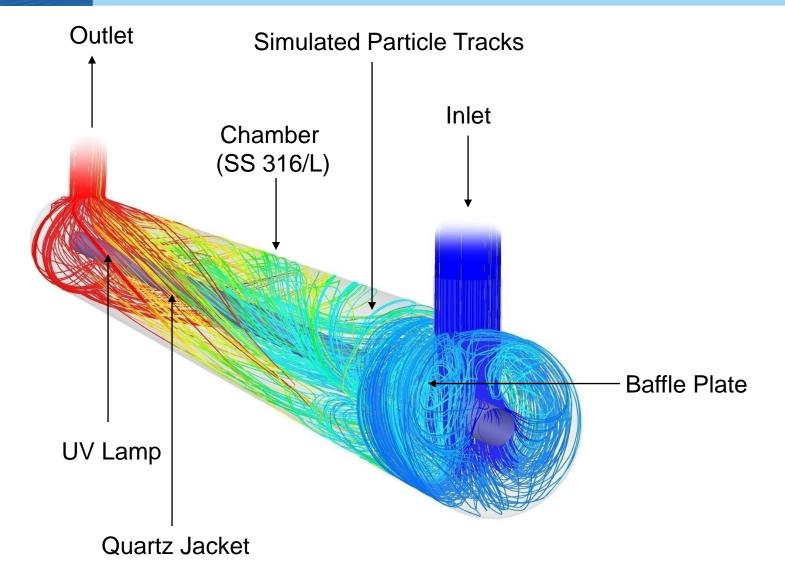
Basic UV System Components

Control Panel

Basic UV System Components


UV Reactor Chamber

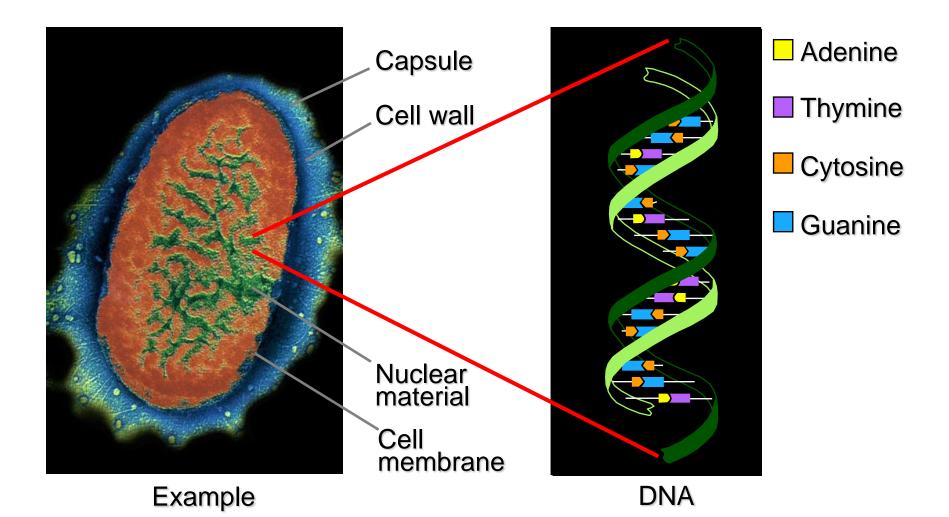
Basic UV System Components



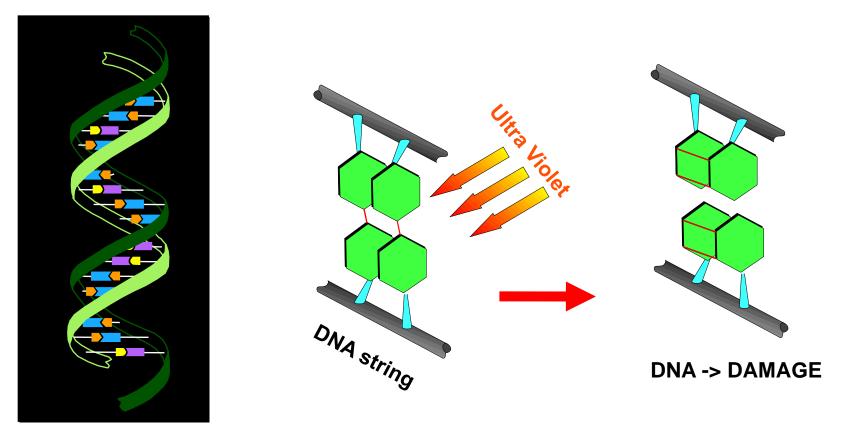
UV Monitoring System

Automatic Wiper System

Basic UV System Components (Simplified)



Microorganism

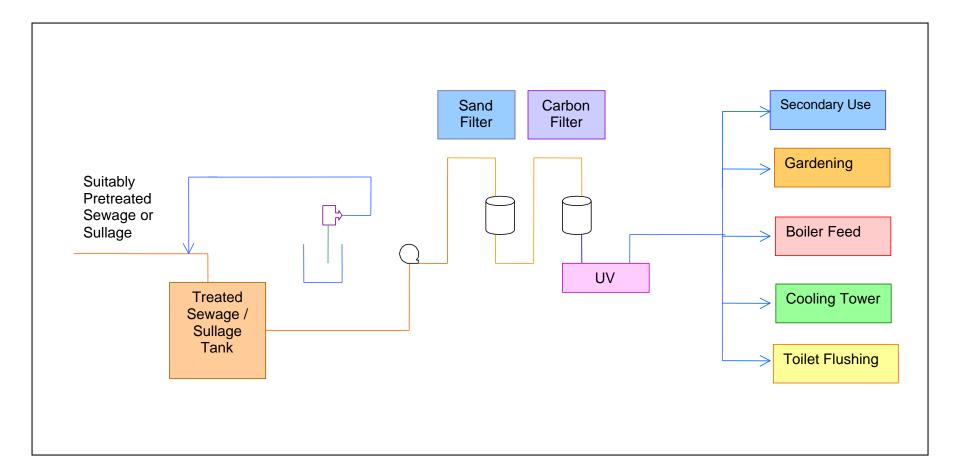


Effect of UV on Microorganisms

DNA string

Vital genetic components contained in microorganisms absorb the light energy; this disrupts the DNA and inactivates the microorganism.

Water Reuse Guidelines



- Acceptance of UV disinfection technology in California was preceded by extensive pilot and full-scale studies.
- This research formed the basis of the "UV Disinfection Guidelines for Wastewater Reclamation in California" (NWRI 1993).
- The guidelines for unrestricted reuse of reuse of effluents require:
 - Turbidity < 2 NTU</p>
 - TC ≤ 2.2 CFU / 100 mL
 - 4-log inactivation of poliovirus.
 - A UV dose of about 140 mW-sec/cm2.

Typical Wastewater Recycling Flowchart

Installation Photos

Indoor Installation

——— Outdoor Installation

UV vs. Chlorine

- If chlorination is to be effective, typically, a *minimum* of 5 ppm chlorine must be dosed before discharge.
- The average dosing in most plants where water is recycled is usually around 10 ppm.
- Chlorine forms many bi-products which are dangerous and harmful.
- If the water being discharged is to be reused, de-chlorination might also be required as excess residual chlorine in the water can affect plants and landscaping.

Chlorine Residual Limits

- For reuse, de-chlorination might become essential.
- UV Disinfection is a physical process which requires no chemicals and which generates no residual.

Formation of Chlorination By-Products

- Forms trihalomethanes which have been found to be cancer causing.
- UV is an environmentally friendly solution that produces no trihalomethanes and carciogens.

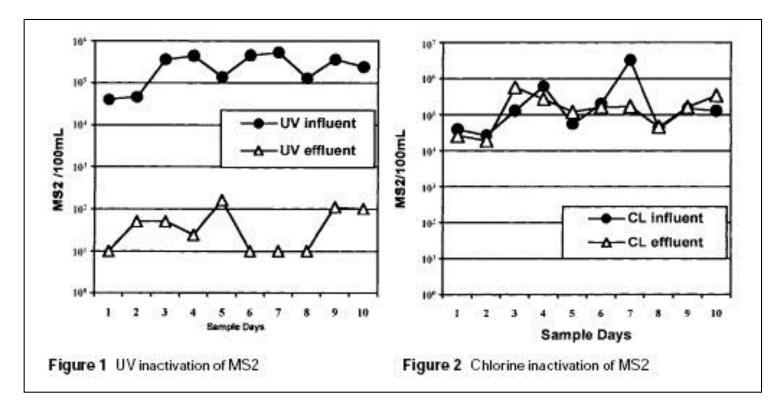
Land Requirements

- Large contact tanks are required for chlorination to provide adequate residence time.
- UV doses for disinfection are delivered instantaneously (in a few seconds) and there is no need for large tanks, leading to significant space (and therefore cost) savings.

Operator Safety

- Accidents pertaining to Chlorine (leaks and spills) can lead to severe burns, permanent vision damage, and lung damage.
- UV disinfection presents no safety, handling, flammability or explosion issues. The risk of operator exposure to UV is extremely low.

Convenience


- Constant supervision is required from both the purchase and engineering departments to ensure that there is always an adequate supply of chlorine available in the plant.
- Plant operator also needs to ensure that the chlorine storage tank is always topped up and that the chemical is being dosed properly.
- UV disinfection requires very low maintenance and operating hassles. No chemicals are needed and only annual lamp replacement is required.

Virus Inactivation

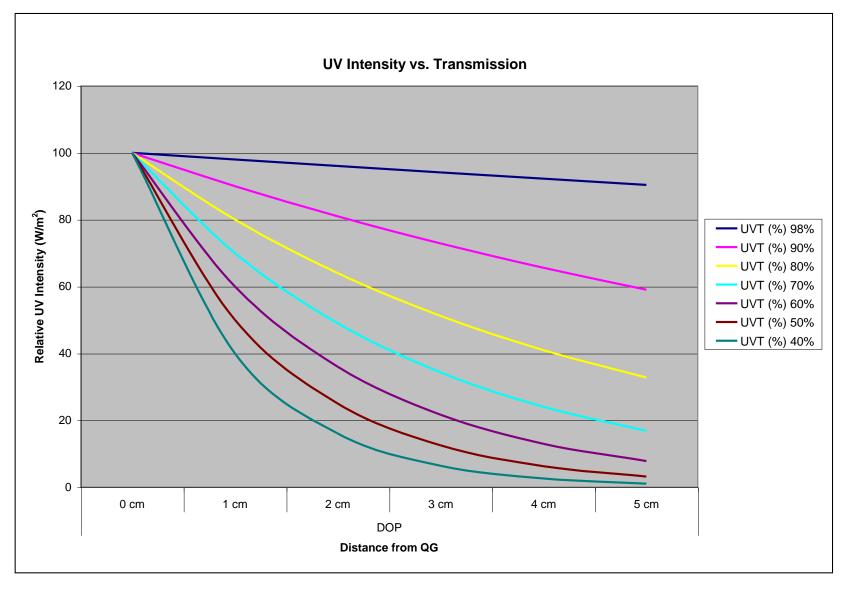
• UV has proved very effective in inactivating viruses as compared to chlorine.

UV vs. Chlorine

For Small Wastewater Recycling Plants (< 1 MLD)

- These plants typically use "liquid chlorine" (sodium hypochlorite), which leads to excessively high running costs in the long run.
- Monitoring of the chlorine dosing is a full time activity to ensure that the chlorine does not run out and that the correct amount is being dosed.
- UV is a much more convenient and cost effective solution, with payback periods in many cases as less as 1 to 2 years.

Factors Affecting UV Disinfection



- UV Transmission
 - Optical transmission of UV @ 254 nm through the water column.
 - Dependent on the organic and in-organic composition of the water.
 - Turbidity and TDS also plays a role.
 - Requires a UV capable spectrophotometer for its measurement.

Factors Affecting UV Disinfection

Factors Affecting UV Disinfection

- TDS & Turbidity
 - TDS plays a direct role in UV disinfections as large suspended particles act like a 'shield' for microorganisms.
 - Therefore, to achieve the high levels of UV disinfection required for wastewater recycling, filtration (sand filter / MGF) is highly recommended.

Influent Parameters to the UV System

30 Samples (5 Plants)	UVT (%)	Turbidity (NTU)	TSS (mg/L)
Average Data	69	1.4	2
Data Range	62 – 81	0.5 – 4	0.2 – 10
Plant with lowest UV dose demand	76	< 1	< 1
Plant with highest UV dose demand	69	0.5 – 2.2	0.5 – 6.3

Averaged Effluent Quality Parameters For Coagulated Filtered Effluents

How do you know that the UV System is working?

- By testing the quality of output water from the UV unit microbiologically.
- By using the Alfaa German DVGW UV monitor to check the UV radiation.

Measurement of UV Radiation

- The disinfection potential of a UV system is monitored by continuous measurement of the irradiance by using a UV intensity sensor.
- Intensity sensors are used to indicate UV dose delivery by providing information related to UV intensity at a point inside the reactor.
- The intensity measured by it **responds to changes** taking place inside the reactor such as lamp power output, lamp aging, lamp sleeve fouling, and change in UV transmission of the water.

Factors Affecting UV System Performance

The Alfaa UV Monitor Will Indicate "Low Dose" in the Event of the Following Circumstances:

- Turbidity.
- UV absorbing organic & inorganic matter.
- Low voltage.
- Quartz glass scaling.
- High / low lamp wall temperature.
- Weak lamp.
- Lamp failure.

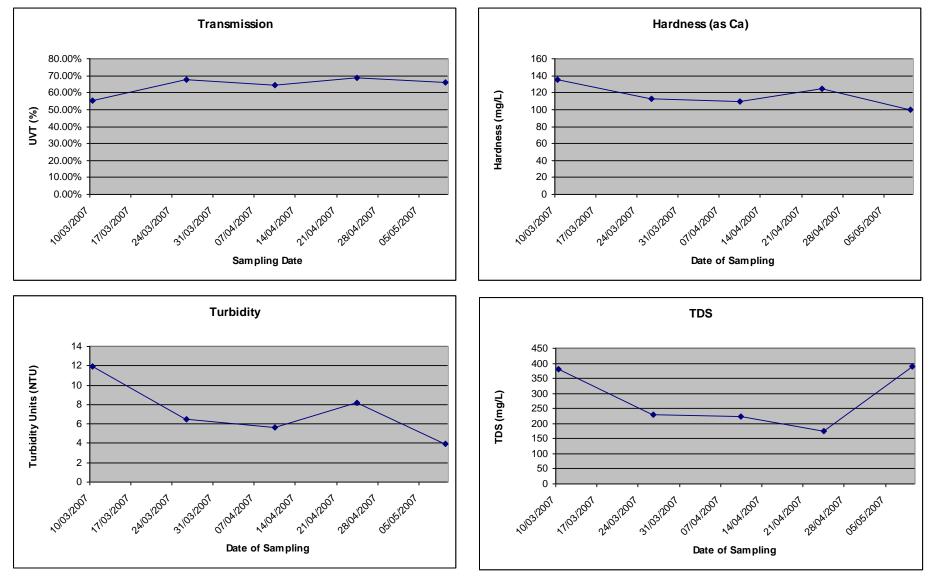
The Alfaa UV Monitor

- All new Dry type UV monitor meets stringent German DVGW standards.
- Can be swapped/replaced while the system is online.
- Built in hour counter and lamp replacement reminder.
- Interfaces with PLCs and other CPE using standardized outputs such as 4-20 mA loop, RS485, and MODBUS.
- Standby monitor can be kept for redundancy or to crosscheck the functioning of the installed monitor.

Alfaa UV	51.5 W/m²
V 0.17	Hour: 100
UV Low Hour: Ø	51.4 W/m² Sile Replace

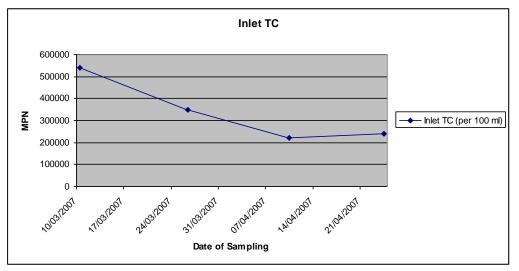
Case Study DIL Ltd. - Thane

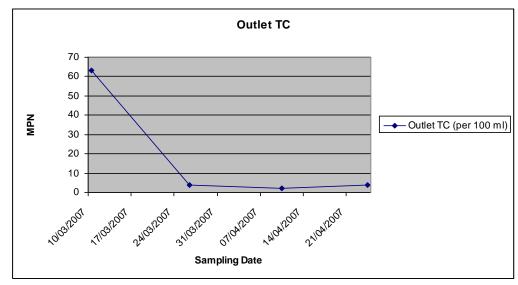
Site: DIL Ltd. – Thane STP Type: Activated Sludge Process Plant Capacity: 120 KLD Reuse Purpose: Gardening & toilet flushing (proposed)


Process:

Primary Screening & Sedimentation ► Acid Dosing ► Biological treatment
(Aeration tank) ► Clarifier (with alum dosing) ► Storage tank ► Sand
Filter ► UV ► Final storage ► User points.

Inlet Parameters to the UV System





Total Coliform (TC)

TC Log Reduction	3.93	4.94	5.04	4.78
Outlet TC (per 100 ml)	63	4	2	4
Inlet TC (per 100 ml)	5,40,000	3,50,000	2,20,000	2,40,000
Sampling Date	10/03/20 07	26/03/20 07	10/04/20 07	24/04/20 07

Sample Installation: DLF Cyber City, Gurgaon

Site: DLF Cyber City, Gurgaon STP Type: Extended Aeration Plant Capacity: 10 MLD UV Dose: 30,000 uW-sec/cm² Discharge: Reuse of irrigation, CTM Output: TC < 10 MPN/100ml

Sample Installation: Lavasa Lake City WWTP

Site: Lavasa Lake City, Maharashtra

STP Type: Conventional

Plant Capacity: 2.4 MLD

UV Dose: 40,000 uW-sec/cm² Discharge: Discharge into Dam Output: TC < 200 MPN/100mI

Sample Installation: DLF IT Park, Hyderabad

Site: IT Park, Hyderabad STP Type: SAFF Plant Capacity: 1.2 MLD Reuse Purpose: Gardening and Cooling Tower Makeup

Process:

Primary Screening & Sedimentation ➤ Biological treatment (Aeration tank) ➤
Clarifier ➤ Storage tank ➤ Sand Filter ➤ UV ➤ Carbon Filter ➤ Softener ➤
Final storage ➤ User points.

Sample Installation: DLF IT Park, Hyderabad

Location

UV System

Secondary Treatment

Overview of the Tertiary Treatment

Sample Installation: Microsoft Campus

Site: Microsoft Campus, Gacchibowli STP Type: SAFF Plant Capacity: 1 MLD Reuse Purpose: Landscaping and Cooling Tower Makeup

Process:

Primary Screening & Sedimentation ► SAFF Reactor ► ► Storage tank ►
Sand Filter ► Carbon Filter ► Softener ► UV ► Final storage ► User points.

Sample Installation: Microsoft Campus

Location

UV Reactor

Tertiary Treatment

Location

- Proper disinfection of wastewater is essential before recycling.
- In the interest of public health and welfare, it is important that proper guidelines and norms be established for disinfection. These norms need to be strictly implemented.
- UV is the only technology which can provide the high level of disinfection required (in a simple and cost effective manner) so that the water can safely be reused.
- Essential to design the system based on the effluent characteristics.
- Chlorination has many disadvantages and is also very expensive in the long run. The use of the same is also being phased out in most developed and developing countries.
- The UV system needs to be well designed and efficient in order to get desired results.

