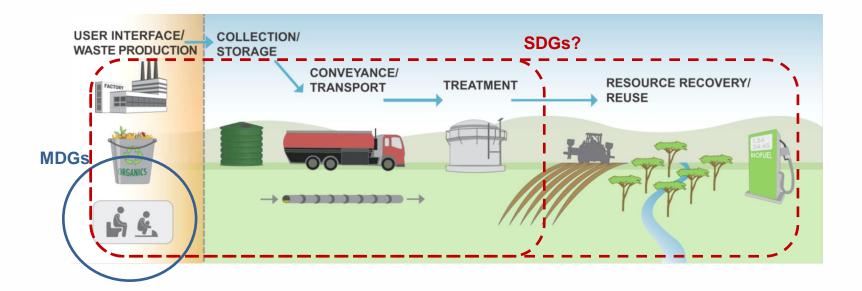


Resource Value Mapping:

Estimating the Potential for Resource Recovery from Productive Sanitation in Urban Areas

SFD exchange meeting

Stockholm, 26 Aug 2016


SEI STOCKHOLM ENVIRONMENT INSTITUTE

Kim Andersson kim.andersson@sei-international.org

MDG to SDG

(Millennium Development Goals to Sustainable Development Goals)

6.3 by **2030**, *improve water quality* by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, *halving the proportion of untreated wastewater, and increasing recycling and safe reuse globally*

Urban challenges:

Urban sanitation gap

 700 million people lack improved sanitation access globally, of which 80 million is practicing open defecation

Cities are major resource consumers:

- 75-80% of natural resources
- 80% of supplied energy
- 50% of waste emissions
- and, 75% of GHG-emissions

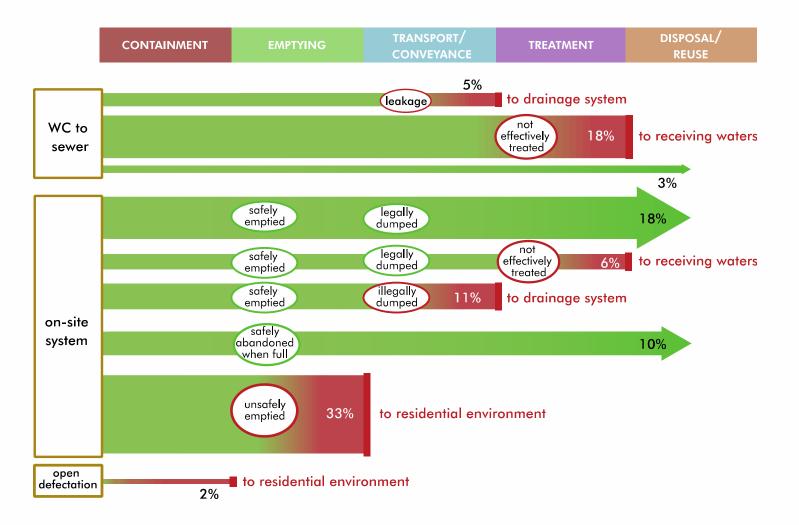
And, pressure on resources is growing further:

- urban population in developing countries is expected to double by 2030, based on 2000 level (2000-2015 it raised from 2.83 to 3.9 billions)
- Global water demand that is estimated to increase with 55% by 2050.
- Climate change impacts, e.g. doughts and floods

STOCKHOLM

INSTITUTE

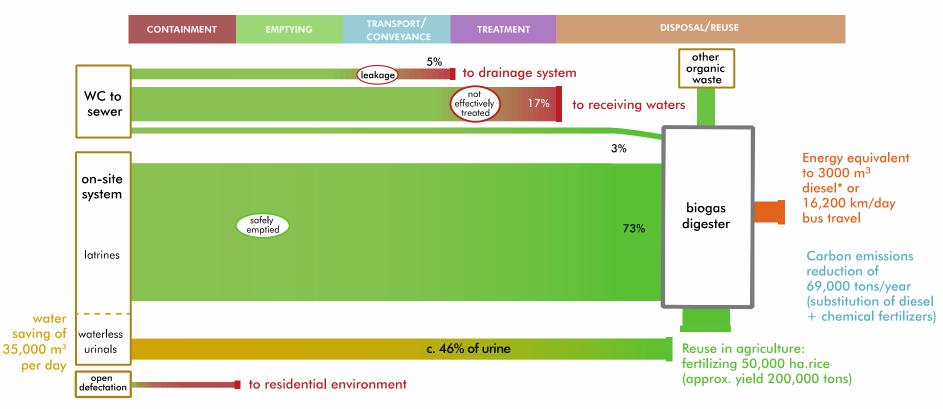
ENVIRONMENT



Sources: UNICEF and WHO (2015) Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment UNEP (2012). Sustainable, Resource Efficient Cities. Making it Happen!; 2012.

WWAP (2015). The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO. Paris

Faecal waste flows in Dakar, Senegal – present status

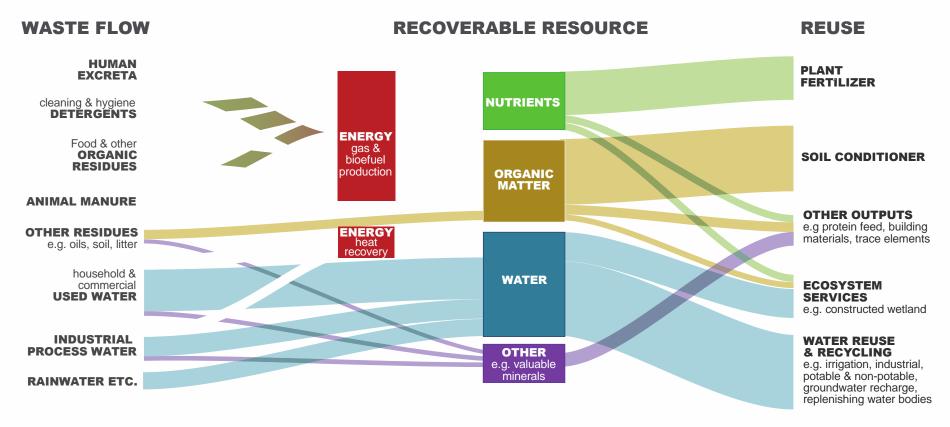


Based on WSP 2014

Source: Andersson et al., forthcoming 2016

Potential of resource recovery in waste flows in Dakar, Senegal

STOCKHOLM ENVIRONMENT


INSTITUTE

* Adjusted to compensate for increased diesel use in transportation.

Source: Andersson et al., forthcoming 2016

Resource Value Mapping (**REVAMP**) Tool

- A tool for evaluating the resource recovery potential of urban waste streams

STOCKHOLM ENVIRONMENT INSTITUTE Source: Andersson et al., forthcoming 2016

Resource Value Mapping (REVAMP) Tool

Objectives:

Tool to support integrated waste resource management and recovery, advancing in sustainable water and sanitation service, and addressing multiple urban development challenges through increased cross-sectoral stakeholder engagement

Target users:

Policy-makers and planners, water, sanitation and waste managers, entrepreneurs and investors; development practitioners, students and researchers

Key initial features:

- Estimate the resources that could be recovered in various forms (such as water, plant nutrients, biogas);
- Estimate quantities of reuse products that could be produced;
- Estimate potential revenues from different reuse products;
- Comparison of reuse options, based on energy and nutrient content, and potential revenues, - to support decision making on city sanitation and waste management plans.

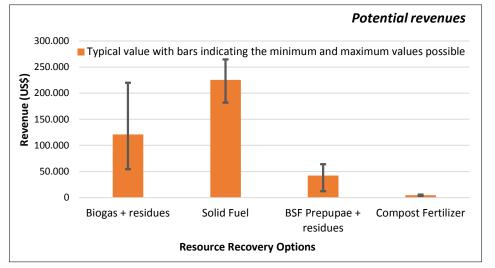
SEI STOCKHOLM ENVIRONMEN INSTITUTE

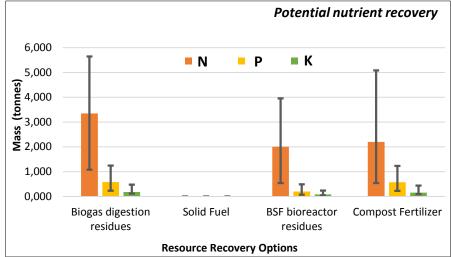
REVAMP Testing in Kampala

An early version of the tool was trialed in the Ugandan capital, Kampala, in 2016. 1.5 million people; around 90% of households use on-site sanitation systems (mainly pit latrines and septic tanks); the rest 10% are connected to the sewer system.

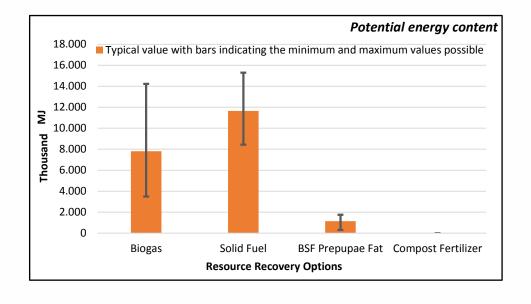
Waste stream amounts in Kampala

	Scenario 1 Current daily collection	Scenario 2 Potential daily collection
Faecal sludge (m³/day)	390	900
Sewage sludge (tonnes/day)	66	282
Organic solid waste (tonnes/day)	700	2199


STOCKHOLM ENVIRONMENT


INSTITUTE

REVAMP Testing in Kampala



REVAMP Testing in Kampala

The potential production of solid combustion could meet the daily needs of 1,108,700 people currently met by firewood, alleviating some of the rapid forest loss.

REVAMP – Next steps?

- Expand the capacity of the tool to incorporate more waste streams (e.g. wastewater and animal manure) and more resource recovery options.
- Include new set of crucial variables: the capital and running costs, and environmental impacts of different resource recovery schemes.
- Migrate the tool from spreadsheets into a more visual platform - where it can be more intuitive and provide an improved user experience
- Validation in a range of varied towns/cities, with a partcipapatory process to populate, test and refine tool functions and user-interface.
- Potential integration with other models & decision support tools for sanitation & waste management
- Expanding with research partners and co-funding

SEI STOCKHOLM ENVIRONMEN INSTITUTE

Thanks!!

SUSTAINABLE SANITATION A CATALYST FOR DEVELOPMENT

-

\$

New release!!

kim.andersson@sei-international.org www.sei-international.org

