SFD Exchange Meeting Stockholm, 26.08.2016

Drawing excreta flow diagrams and additional fluxes, combined with simulation – the Simba# technical tool

Manfred Schütze ifak e. V. Magdeburg, Germany

Email: manfred.schuetze@ifak.eu Web: www.ifak.eu

ifak Magdeburg (Flooding June 2013)

A: Lima/Peru: A city with water challenges

Some characteristics of Lima

- Second-driest city of the world (Rainfall: 9 mm p.a.)
- Rivers with trans-Andean tunnels, groundwater
- □ Some wastewater reuse (parks, agriculture) untreated wastewaters
- □ Water production: approx. 20 m³/s
- □ Main worry of population: Access to water
- □ Challenges in administrative framework

Present population: 9 million

A: Lima: Modelling for stakeholder participation

B: Drawing an SFD

B: Drawing an SFD

4. Result: SFD Dakar (as on SFD Webpage)

A+B: Simulation, visualisation and SFD (1)

A: The "LiWa" experience

- "Macromodelling of water system"
- Visualisation extremely helpful,
 - Supported informed discussions,
 - Created ownership of Action Plan
- Water quantities, quality
- Availability demand
- Feedback loops
- Diagram as result of simulation

B: SFD

- % of excreta flows
- "good"/"bad" flows
- "just" a diagram (but very useful!!!)
- Diagrams to be created manually

Combination of these two?

A+B: Simulation, visualisation and SFD (2)

- Are the following of interest?
 - □ Time series (future developments/scenarios)
 - □ Spatial distribution (e.g. city districts)
 - Particular substances (e.g. nutrients)
 - □ Calculation of additional criteria (e.g. costs, GHG)
 - Individual technologies?
 - Who are the users?
 - Visualisation, assistance of strategic planning
 - NOT: detailed modelling
 - (for that: other tools, modules of same simulator)
 - Scripts to assist/automate model building and application process

New and alternative sanitation systems (NASS): System visualisation

Concept:

Consideration of resource fluxes

Input/Output	Colour used	Input/Output	Colour used
Anal Cleansing water	\rightarrow	Faeces	\rightarrow
Black water	\longrightarrow	Flush water	\longrightarrow
Biogas		Faecal Sludge	\longrightarrow
Brown water	\longrightarrow	Organics	\longrightarrow
Compost/ Ecohumus	\rightarrow	Stored Urine	
Dried Faeces	\longrightarrow	Treated Sludge	\rightarrow
Dry cleansing Materials		Urine	\longrightarrow
Effluent	\rightarrow	Excreta	\rightarrow

Adapted from: Tilley et al. (2008)

- Sanitation chain: User interface Collect/Storage/Treatment Conveyance -(Semi)centralised treatment - Use/Disposal
- Block-based composition of systems

New and alternative sanitation systems (NASS): System visualisation

User Parameter dialogue

۲	Parameter block Cistern flush toilet				- 🗆	×			
Parameter									
	Type of toilet	Cistern flush toilet		~					
	Lifetime	10		y	/ears				
Energy consumption (Vacuum toilet only)		4		k	kWh/cap/year				
Number of times the small flush water quantity is used		4		r	number/cap/d				
Number of times the full flush water quantity is used		3		r	number/cap/d				
Flush water quantity for the small flush		3		l,	l/flush				
Flush water quantity for the full flush		6		l,	l/flush				
Anal cleansing water demand per cleansing per person		0		l	litre/cleansing				
	Average number of household served by one unit 1								
			Help	Apply	Cancel	OK			

New and alternative sanitation systems (NASS): System visualisation

Definition of modules

Example: eThekwini (Durban)/South Africa

Nutrient Flux

Dried Faeces

Stored Urine

Source of Anal Cleansing Water

Simulation of N fluxes (kg/day)

Daily load (kg/day) for Scenario "A" (Blue cone = Nitrogen; Red cone = Phosphorus)

New and alternative sanitation systems (NASS): Potential scenarios (von Horn *et al.,* 2013)

- NASS-Option 2: Environmentally-friendly hotel
 - Separation of urine, used as fertiliser
 - Greywater treated for reuse
 - Blackwater composted or used for biogas production

Drawing excreta flow diagrams + simulation: Conclusion

- Summary
 - Combinations of SFD with simulation possible
 - Some specifications and then go ahead! The tools are there!

New and alternative sanitation systems (NASS): Summary

Thank you!

manfred.schuetze@ifak.eu

www.ifak.eu

simba.ifak.eu

