

Final Report

Bio-gas yields from Toilet Linked Biogas Plants in Nausari / Valsad District, Gujarat, India

Report submitted to

WASTE, Netherlands & FINISH Society, India

Submitted by Dr. Pawan K. Jha Foundation for Environment and Sanitation, New Delhi, India

December 2014

Gas yields from toilet linked biogas plants in Nausari / Valsad Districts, Gujarat

Contents

Executive summary	.2
1. Introduction	
1.1 Location of the study	.4
1.2 About biogas plants	.5
1.3 Design of Deenbandhu biogas plant	.6
2. Methods for the study	11
2.1 Loading of biogas plant with cow dung	11
2.2 Measuring biogas	11
2.3 Analysis of biogas	12
2.4 Analysis of physic-chemical and microbiological parameters	13
2.5 Effects of slurry on yields crops and vegetables	13
3. Observations	
3.1 Measurement of biogas production in Pather Village	13
3. 2. Measurement of biogas produced in the Village Adda	15
3. 3. Measurement of biogas in the village Boraich	16
3.5 Analysis of composition of biogas	18
3.7 Effects of slurry on yields of vegetables / crops (may be deleted)	20
4 Technical explanations of the results	22
Annex 1 Detailed gas readings per village	24

Executive summary

Biogas from cow dung with or without toilet linkage is in practice for over 3 decades in India. It is supported by the Ministry of New & Renewable Energy, Government of India and State Governments.

However, the toilet linked biogas plant programme could not get required momentum, even though it has several advantages. Poor acceptability of the programme is mainly due to psychological taboos associated with human wastes and lack of adequate awareness and motivation to households.

To overcome the problem, the additional economic importance / advantages of toilet linked biogas plants over non-toilet linked biogas plants need to be demonstrated. The people with psychological taboos are often from the lower economic groups. The households requiring biogas for cooking purpose are from the same group. Therefore, the economic aspect is a prime motivator for creating social acceptance.

Toilet linked biogas plants have increased rate of biogas production over biogas plants without the toilet linkage. The percentage of the increase varies with number of users of the toilet in a family and the ratio of quantity of human wastes / quantity of cow dung. The higher the ratio, the higher is the rate of biogas production. In the present observations in 4 different villages covering total 16 families such increase has been recorded to vary between 25-32%.

Higher generation of biogas from toilet linked biogas plants is mainly due to complementary actions of different groups of bacteria present in human wastes and cow dung. Methanogenic bacteria are abundantly found in cow dung where as hydrolytic bacteria and acetogenic bacteria are copious in human excreta. Complementary actions of all these bacteria lead to increase production of biogas plant. Percentage of methane in the biogas from a toilet linked biogas plant is higher than the methane percentage in biogas from a non-toilet linked biogas plant, i.e. it has a higher calorific value. The results show that a family can have sufficient biogas with lower input quantities of cow dung. Cooking requirements will be met even with dung from 2 cows.

Plant nutrient values from slurries from toilet linked and without toilet linked biogas plants are being examined. Earlier, the samples were submitted to the Agriculture University for analysis. Their results were not acceptable as it mentioned in term of wet weight basis. It will be available by the end of this month. Effects of slurry on different vegetables and crops are being monitored. Such results may have good impact on its economic aspect and help social acceptability of the programme.

Final report on Toilet linked biogas plant at Nausari /Valsad district

1. Introduction

Promotion of a family-size biogas plants with slurry management is a programme of the Ministry of New & Renewable Energy (MNRE), Government of India. It was implemented in different states in India, through State Nodal Agencies, since the early 1980s.

Later, in late 1980s, toilet linked biogas plants was also included under the programme for Central Financial Assistance by the Ministry. Financial support is provided by the MNRE, Government of India and State Government, Gujarat, through Gujarat Agro-Industries- a State Nodal.

The project on cow dung based biogas plants with toilet linkage is implemented in different villages in Nausari and Valsad districts in Gujarat by Vasudhara Dairy, Chikli. The project is implemented by WASTE, Netherlands and the Finish Society, India for technical and awareness/ motivation for linking of toilets to biogas plants with support from ICCO. A total of 1627 family size biogas plants have been implemented during 2012-13 and 2013-14. These plants are based on cow dung only yet with having a provision of connecting with toilet also, when households such desire. Additionally, 747 cow dung based biogas plants connected with toilets have been implemented during the same period. In the fiscal year 2014-2015 the Government has sanctioned 960 biogas plants to Vasudhara Dairy. The sanction letter was issued in October/ November 2014. There are several biogas plants under different stages of construction under the sanctioned target.

Linking toilets to biogas plants has so far been given little attention either by the State or Central Government. Its low acceptability is mainly caused by psychological taboos associated with human waste and lack of awareness and motivation programmes to households. Hence, there are only few toilet linked biogas systems and most people are not aware about use of human waste for production of biogas, improved health impact from sanitation and economic importance of biogas production from human wastes. The taboos can be reduced by considerable extent when

economic benefits of linking toilet with biogas plants is properly demonstrated to households coupled with awareness and motivation.

An assignment has been given by WASTE / the Finish Society to evaluate the biogas production from cow dung when the biogas plant is linked and not linked with toilets; the composition of biogas in terms of percentage of methane, carbon dioxide and hydrogen sulphide; comparative plant nutrients values in slurry of biogas plants from toilet linked and without toilet linked biogas plants; analyse the composition of the slurry resulting from toilet linked and non-toilet linked biogas slurry – including pathogens – and lastly evaluate the effects of toilet linked biogas plants on different crops and vegetable grown in the area. The latter research could not be completed as prior to harvesting a cyclone destroyed all crops in the area¹.

To evaluate the effects on biogas production with toilet linked biogas plants the following studies have been conducted:

- Comparative analysis of biogas production rates from toilet linked and non-toilet linked biogas plants
- Analysis of biogas for its methane and other constituents.
- Comparative analysis of plant nutrient values from toilet linked and non-toilet linked biogas plants
- Effects of yields of crops and vegetables when slurry of biogas plants is used in agriculture (not completed).

1.1 Location of the study

Biogas plants are being implemented in several villages in the districts of Nausari. For study purposes four villages - Pathari, Adda (Navagam), Boriach, Unn - were selected. In each village 4 households were selected -3 families with toilet linked biogas plants - and one family with no toilet linked biogas plant.

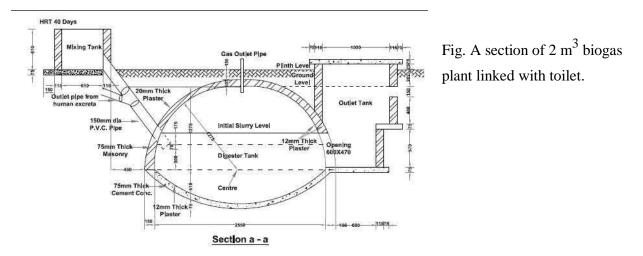
¹ A second report will be made available on subsequent, i.e. post-cyclone, research.

1.2 About biogas plants

Deenbandhu Biogas plants of 2 m^3 with slight modification have been constructed. The modification is the Y shaped pipe in the inlet of biogas plant- one pipe is connected to the toilet and another to inlet chamber for cow dung mixing tank. The outlet chamber of the plant, also called expansion chamber, is connected to a storage chamber of slurry. After the chamber is filled it is taken out and stored till further use in agriculture lands.

Produced biogas is passed through a 1.25 cm dia pressure pipe from digester to the gas burner in the kitchen. There is no moisture trap connected with the biogas plant. It is not required as the biogas pipe is connected vertically upward from biogas plant. Therefore, any moisture condensed in the pipe passes back to biogas plant. However, in some households it was seen that moisture gets condensed in pipe when there is bent in pipe, blocking smooth passage of biogas. In such cases, the pipe is opened from the burner and condensed water is drained out by households.

Biogas plants are made with Reinforced Concrete Cement (RCC). Therefore, there is no chance of leakage of biogas through the dome of plant. An innovative method in the construction of biogas plant is the use of pre-fabricated steel mold of whole upper part of biogas plant including out let. Fabrication of a steel mold is a onetime expenditure and it saves labour cost and requires much less time to construct a plant. Use of a mold prevents errors in the design/ dimension of biogas plant. One such mold is mentioned below. There is chance of leakage of biogas when the



plant is constructed with bricks. In an exhibition cum seminar on NBA organized by the Government of Gujarat in September, 2014, FINISH was invited to show its biogas plant project. Chief Minister of Gujarat took interest with the toilet linked biogas plant being implemented by FINISH. She was impressed with the prefab mold of dome of biogas plant.

Photo 1 Chief Minister Gujarat being explained about toilet linked biogas plant (photo September 2014)

1.3 Design of Deenbandhu biogas plant

The design of a Deenbandhu Biogas plant implemented under the project is as under. The design is approved by the Ministry of New Renewable Energy Sources, Government of India under its Central Financial Assistance programme.

Photographs of toilet linked and without toilet linked biogas plants

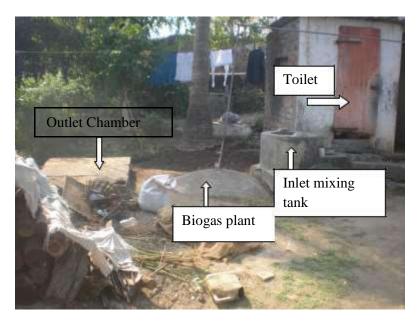


Photo 2 Toilet linked biogas

Photo 3 Outlet chamber with slurry tank being cleaned recently

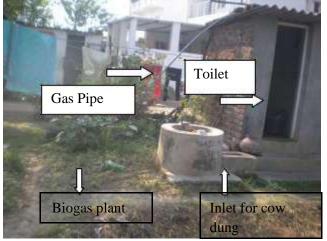


Photo 4 Toilet linked biogas plant

Photo 5 Toilet linked biogas plant

Photo 6 Toilet linked biogas plant

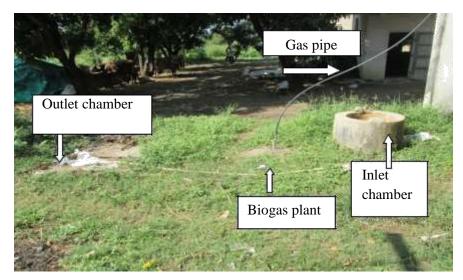


Photo 7 Cow dung based biogas plant without toilet linkage

Biogas plants under construction at different stages

Photo 8 Steel mold of biogas plant put for completing upper part of the plant

Photo 9 Biogas plant with completed dome. Inlet tank and Outlet chamber under construction.

Photo 10 Complete biogas plant with Inlet tank and outlet chamber under construction

Photo 11 Almost complete biogas plant only outlet chamber is to be covered with slabs

2. Methods for the study

2.1 Loading of biogas plant with cow dung

Daily loading of cow dung by each household was measured. Households were requested to maintain same quantity of loading every day. Yet, it was difficult to fix loading quantity for each family, due to difference in practice and requirement of gas by households. Loading rate also varied with the size of the bucket for loading. In each household cows are available; their number varies between 2 and 9. Excess quantity of cow dung is used for making cakes or in agriculture fields. Loading rate of cow dung varied between 15 kg to 36 kg per day in different households. Required quantity of cow dung is mixed with equal amount of water in the inlet tank and mixed with stirrer before it is put into biogas plant. Loading of biogas plant is done by 8 AM every day. The number of persons in households using toilets connected with biogas plants varies between 2 and 8.

2.2 Measuring biogas

The capacity of all biogas plants is 2 m³. In each village 4 families are selected- 3 families with toilet linked biogas plants and one family without toilet linked. A gas flow meter of flow rate 2 m³/ hour is fixed with gas burner for cooking with each selected family. The gas outlet pipe from biogas plant is connected to the inlet point of the gas meter; outlet point of the gas meter is connected to the gas burner (Photos 12-15).

Daily reading of the gas meter gave amount of gas used in the burner. Daily consumption of biogas in a family varied considerably. Sometimes households make a meal only once in a day as they may be invited by relatives / friends for a meal. Similarly, consumption of biogas can be high in a family as they may have invited relatives / friends for a meal. In any case, no household with a toilet linked biogas plant was found using LPG for cooking purpose.

There may be surplus biogas inside the biogas plant. To measure total biogas, at an interval of 3-4 days total biogas was burned through the gas burner and the gas reading was taken. It gave the reading of total produced biogas till that time. Based on the readings, total gas produced from those with and without toilet linked biogas units was recorded. These readings were measured continuously for 27-43 days for each biogas plant in different villages. The reading of the gas meter was taken after 2 PM each day when cooking was completed in family.

Average gas production rate was calculated considering total amount of cow dung fed into biogas plant and total gas produced during the period of measurement in different villages. For a village, the number of days of observation was same for all the biogas plants. Calculation was made for biogas production rate against per 25 kg of cow dung for all the biogas plants. Based on the calculation percentage rate of increase or decrease in gas production was calculated.

Photos 12 -13 Gas meters attached to gas burners used for cooking

Photos 14 -15 Gas meters attached to gas burners used for cooking

2.3 Analysis of biogas

Analysis of biogas (percentage of methane, CO₂ and H₂S) from with and without toilet linked biogas plants were carried out through the Pollucon Laboratory, Surat, Gujarat - a NABL accredited laboratory. Samples of slurry from both the sources were analysed for different chemical and microbiological parameters like pH, TS, VS, TKN, P, K, faecal coliform and helminths through the concerned departments of the Navsari Agriculture University, Navsari, Government of India, Gujarat.

2.4 Analysis of physic-chemical and microbiological parameters

Analysis of physic-chemical and microbiological parameters of slurry from toilet linked and without toilet linked biogas plants are being carried out by Navsari Agriculture University.

2.5 Effects of slurry on yields crops and vegetables

To evaluate effects of slurry on yields of different crops and vegetables, experimental agricultural fields have been selected. 5 agricultural plots each having 100 m^2 areas have been selected- one plot each for wheat, brinjal, cauliflower, chilly (capsicum), tomatoes. Turnip and carrot were not used due to possible contamination through coliforms and helminthes. In these fields, no slurry or inorganic fertilizer has been used previously.

3. Observations

3.1 Measurement of biogas production in Pather Village

In Pather village, 4 families were selected for the study:

- i. Mr. Arwind Bhai Sukhabhai Patel
- ii. Manubhai Fikabhai Patel
- iii. Bhupendra Bhai Patel
- iv. Bhalchardra Bhikha Bhai Patel

First 3 of the above families have toilets linked with biogas plants whereas the last family has its toilet not linked to the biogas unit. The reading of gas measurement in the village was taken for 24 days. For a family quantity of cow dung put into biogas plant was fixed. It was as per the practice and requirement of biogas by the family. The quantity was measured and recorded.

Initially there were five biogas plants taken under the study. One meter was found not working on 24th Day. Readings of the meter was totally discarded. Therefore, readings of only 4 biogas plants only were taken into consideration.

Biogas production from fixed quantity of cow dung (25 kg) was calculated from each biogas plant considering total amount of cow dung fed into the plant and total produced biogas plant during 24 days of experiment. The following is the summary of biogas generation along with quantity of cow dung used in different biogas plants (Table 1). Details of gas production per day from each biogas plant are mentioned in Annexure 1 Table 5.

S1.	Name of	Toilet	If	No. of	Quantity	Total quantity	Final reading	Calculated
no.	household	linked or	linked,	cattle	of dung	of cow dung put	of gas meter	production of
		not linked	no. of users of	in the family	used daily	into plant in 24 days	m ³ Initial reading of all	biogas per 25 kg of cow
			toilet				the Gas Meters was 0	dung m ³
1	Arwind Bhai Sukhabhai Patel	Toilet link	4+1	4+2	24 kg	576 kg	24.32	1.05
2	Manubhai Fikabhai Patel	Toilet link	4+2	3+2	25 kg	600 kg	31.38	1.30
3	Bhupendra Bhai Patel	Toilet link	4+1	1+2	15 kg	360 kg	18.23	1.26
4	Bhalchardra Bhikha Bhai Patel	Without toilet		4+2	30 kg	720 kg	21.18	0.73

Table 1 Pather village

The average biogas production from 3 toilet linked biogas plant against 25 kg cow dung comes to an average of 1.20 m^3 against 0.73 m^3 from without toilet linked biogas for the same quantity of cow dung, i.e. there is 39% increase in gas production.

Readings for toilet linked biogas plant includes gas production from human waste as well. Based on the literatures available, it is 0.03 m^3 per person per day. For one day, this gas production would be around 0.12 m^3 per day for 4 persons in a family. Calculation is made for biogas production with 25 kg of cow dung for comparison point of view. To know the additive effect, from this figure under each head of toilet linked biogas production, biogas production from human waste in one day i,e. 0.12 m^3 needs to be deducted. Therefore, gas production rate from toilet linked biogas plant against 25 kg of cow dung and after deducting gas production from human wastes it comes to 0.93 (Fam. 1), 1.18 (Fam. 2), and 1.14 (Fam. 3) m^3 for the household. On an average, it is 1.08 m³. There is only 0.73 m³ gas production from 25 kg of cow dung. Thus, there is an additive effect. The additive effect is 32%.

3. 2. Measurement of biogas produced in the Village Adda

In Adda village the following households having biogas plants were studied:

- i. Ashwin Bhai Chandrakant Bhai Patel
- ii. Kusum ben
- iii. Mahesh Bhai
- iv. Ganga Ben

Biogas measurement through gas meter was taken continuously for 41 days in all the families. Biogas plant of Ganga Ben was without toilet- working as control. In rest three families biogas plant was connected with toilet. The following table gives total quantity of cow dung fed into each biogas plant and corresponding produced biogas (Table 2). In this village also cow dung put in biogas plant by households was measured and same quantity was fed every day. Biogas production from fixed quantity of cow dung (25 kg) was calculated from each biogas plant taking into account total amount of cow dung fed into the plant and total produced biogas plant during 41 days of experiment.

S1.	Name of	Toilet	No. of	No. of	Quantity	Total quantity	Total Gas	Calculated
no.	household	linked or	users of	cattle	of dung	of cow dung	produced	production of
		not linked	toilet	in	used daily	put into plant in	m ³	biogas per 25 kg
				family		41 days		of dung $-m^3$
i	Ashwin	Toilet link	3+1	2+2	30 kg	1,230 kg	59.09	1.20
	Bhai Patel							
ii	Kusum ben	Toilet link	4+2	3+2	24 kg	984 kg	49.64	1.26
iii	Mahesh Bhai	Toilet link	4+1	2+2	25 kg	1,025 kg	52.65	1.28
iv	Ganga Ben	Without	NA	4+2	30 kg	1,230 kg	45.77	0.93
		toilet						

Average biogas production from three toilet linked biogas plants per 25 kg of cow dung fed is calculated to be 1.24 m^3 against the 0.93 m³ gas production for without toilet linked for the same quantity of feed material. Thus, there is 25 % increase in gas production when linked with toilet. Details of the per day gas readings for 41 days are annexed (Annex 1- Table 6)

3. 3. Measurement of biogas in the village Boraich

In Boriach village gas meters were installed in the following households:

- i. Suresh Bhai Ram Bhai Patel
- ii. Indira Ben Patel
- iii. Mani Ben Thakur Bhai Patel
- iv. Thakur Bhai Patel

The biogas plant of Thakur Bhai Patel is without toilet linkages. All rest three are toilet linked biogas plants. Capacity of each plant is 2 m^3 . For all families, gas meter was attached to the gas burner for cooking. Reading of gas meter was taken for 43 days continuously. The readings primarily gave the quantity of biogas consumed by the family. In a family consumption varied considerably. Sometimes families made only one meal due to invitation by friends/ relatives for a meal. Similarly, sometimes consumption was high as they reciprocated. There could be a surplus biogas inside plant. Therefore, after an interval of 3-4 days all biogas was burnt through cooking burner and gas was measured. It gave the reading of total produced biogas till that day.

Biogas production from fixed quantity of cow dung (25 kg) was calculated from each biogas plant considering total amount of cow dung fed into the plant and total produced biogas plant during 43 days of experiment. Total produced biogas under total feed material is summarized as in Table 3.

Table 3 Village Boraich

S1.	Name of	Toilet	No. of	No. of	Quantity	Total quantity	Total Gas	Calculated
no.	household	linked or	users of	cattle	of dung	of cow dung	produced	production of
		not linked	toilet	in	used daily	put into plant in	m ³	biogas per 25 kg
				family		43 days		of dung $-m^3$
Ι	Suresh Bhai	Toilet link	3	1+2	20 Kg	860 kg	46.55	1.35
	Ram Bhai							
	Patel							
Ii	Indira Ben	Toilet link	5	2+2	20 Kg	860 kg	51.58	1.49
	Patel							
Iii	Mani Ben	Toilet link	4	2+2	20 Kg	860 kg	49.32	1.43
	Thakur Bhai							
	Patel							
Iv	Thakur Bhai	Without	NA	4+2	25 Kg	1075 kg	46.90	1.09
	Patel	toilet						

Average biogas production from 25 kg cow dung from three biogas plants linked with toilet is 1.42 m^3 , whereas gas produced from without toilet linked biogas plant against the same quantity of feed is 1.09 m^3 . Thus, there is an adjusted increase in biogas production of 30.27%. Details of the per day measurement of gas from all four households are presented in Table 7 (Annex 1).

3. 4. Measurement of biogas from biogas plants installed at Village Unn

The following families with biogas plants were selected for the present study.

- i. Soma Bhai Patel
- ii. Chhiba Bhai Patel
- iii. Amrit Bhai Patel
- iv. Mahesh Bhai Mangan Bhai Patel

The biogas plant of Mahesh Bhai is not linked with toilet. Rest of the plants have toilet connections. Fixed and known quantity of dung is put into the biogas plant daily. Such loading is done around 8 AM and biogas is measured. The reading of gas measurement was started on November 24, 2014 and is still going (at the time of report preparation). So far readings for 21 days have been taken. Also in this case for each family production of biogas was calculated against 25 kg of cow dung after calculating total quantity of biogas against known total quantity of cow dung fed. Summary of the total gas production against each biogas plant is as follows (Table 4). Details of the readings of biogas meters are presented in Annex 1 (Table 8).

S1.	Name of	Toilet	No. of	No. of	Quantity	Total quantity	Total Gas	Calculated
no.	household	linked or	users of	cattle	of dung	of cow dung	produced	production of
		not linked	toilet	in	used daily	put into plant in	m ³	biogas per 25 kg
				family		21 days		of dung $- m^3$
i	Soma Bhai Patel	Toilet link	8	5	20 kg	420	31.07	1.84
ii	Chhiba Bhai Patel	Toilet link	4	3	15 kg	315	18.69	1.48
iii	Amrit Bhai Patel	Toilet link	2	2	15 kg	315	16.06	1.27
iv	Mahesh Bhai Patel	Without toilet	9	7	36 kg	756	35.17	1.16

Analysis of biogas production rate. Average biogas production per 25 kg of cow dung from toilet linked biogas plant is 1.52 m^3 , whereas from without toilet linked biogas plant it is 1.16 m^3 for the same quantity of cow dung. Thus, the gas production increase is 31.01%.

3.5 Analysis of composition of biogas

Biogas samples from toilet linked and without toilet liked were analysed through Pollucon laboratory, a NABL accredited laboratory. The following is the result of analysis:

Sl. No.	Source	Methane %	Carbon Dioxide %	Hydrogen sulphide ppm
1	With toilet linked biogas plant	63.8	31.4	55.37
2	Without toilet linked biogas plant	60.4	33.9	72.82

The analysis shows that toilet linked biogas has higher percentage of methane and lower percentage of carbon dioxide and hydrogen sulphide.

3.6 Analysis of physic-chemical and microbiological parameters

To analyse different physicochemical and microbiological parameters from slurries from toilet linked and without toilet linked biogas plants, samples were submitted to Navsari Agriculture University. The parameters were- TS, VS, TKN, P, K, Helminths and feacal coliform and Total Coliform. Samples were resubmitted to the Navsari Agriculture University for testing different chemical and microbiological parameters.

During the experiment on wheat, only slurry from toilet linked biogas plant of the farmer was analysed. The average results of analyses are as follows.

Parameters	Slurry (toilet linked biogas plant	Slurry (without toilet linked biogas plant)
Total Solid (%)	59.27	62.83
	Dry weight basis	
Total N (%)	1.34	1.01
Total P (%)	0.55	0.39
Total K (%)	0.16	0.12

Analyses of slurry from toilet linked biogas plant used for wheat plot at Valsad

Parameters	Value
Total Solid (%)	65.61
Total N (%)	1.29
Total P (%)	0.69
Total K (%)	0.18

Microbiological analyses

Microbiological analyses of samples were carried out for fresh slurry as well as after sun dried. There were 3 samples analysed at different period during the experiments. The following is the results:

Parameters	Slurry from linked bio		Slurry from biogas plant	without toilet linked
	Fresh slurry Sun dried slurry		Fresh slurry	Sun dried slurry
Total Solids (%)	59.56	91.63	52.87	90.85
Helminths eggs	Absent	Absent	Absent	Absent
Coliforms (per gram)	Present	Absent	Present	Absent

Helminths eggs were absent in all samples. Coliforms were present in wet slurry. However, sundried slurry was tested to be free from coliforms also.

3.7 Effects of slurry on yields of vegetables / crops

To assess the effects of slurry from toilet linked biogas plants on vegetables and crops, 5 agricultural plots each having 100 m^2 areas have been selected. One plot each for wheat, brinjal (eggplant), cauliflower, chilly (capsicum), tomatoes. Turnip and carrot were not used due to possible contamination through coliforms and helminths. In these fields, no slurry or inorganic fertilizer has been used previously. Wheat has been sown till date as atmospheric is still high not suitable for wheat. Plot for wheat is ready. It is expected to be sown in next 2 days. Results of the experiment will be available in next 2-3 months. However, results from wheat will be available only in last month of March or early April. Some of the photographs of the plots are as follow:

Photo 16. Brinjal plants in the experimental field

Photo 17 Experiment plot for Cauliflower plants

Photo 18 Experimental plot for Tomatoes plants

4 Technical explanations of the results

From the Tables 1-4 it is evident that rate of production of biogas from toilet linked biogas plant is higher than the biogas plants without toilet linked. Percentage of such increase in varies from 25 to 31 % in different sets of experiments in different villages. Such variation in increase is comparable with the number of users to toilets in a family. It clearly shows that there is additive effect on biogas production when toilet is linked with cow dung based biogas plants. There are technical explanations to justify such increase in biogas production.

It can be explained in two sub headings

i. Biogas is produced from any substrate by the action of at least three groups of bacteria that act as a relay system, i.e., one group's metabolite product is the substrate of another group. It can be summarized as follows:

Hydrolytic	stage Acet	ogenic stage	Methanogenic stage
Organic matter	Organic acids	Ac	etic acid \longrightarrow Methane + CO2
	CO2, alcohols	H2	2,CO2

Hydrolytic stage by hydrolytic bacteria is the 1st group followed by Acetogenic bacteria and the last group is Methanogenic bacteria. In cow dung methanogenic bacteriaresponsible for methane gas formation, are abundantly found, where as there is little presence of hydrolytic and acetogenic bacteria. In case of human excreta hydrolytic bacteria are abundantly found. Acetogenic bacteria are also present in this waste, but methanogenic bacteria are either absent or rarely found. Therefore, in case of biogas plant solely based on human waste, cow dung is mixed once at the start that acts as inoculums for methanogenic bacteria.

Therefore, by mixing human wastes with cow dung there is complementary action by different groups of bacteria to produce biogas. It has been observed that when toilets are used by higher no. of users or when there is higher human waste / cow dung ratio, there is higher rate of production of biogas. Therefore, rate or enhanced biogas production varies with number of user of toilet.

ii. Per tonne cow dung, 40-45 m³ biogas is produced, whereas per tonne of human excreta, 85-90 m³ biogas is generated. There is no experiment on biogas generation from human excreta on weight basis. However, there are references of production of 0.03 m³ biogas per person per day. Quantity of human excreta per person in India is taken as 300 g. Based on this figure, biogas generation per tonne of human excreta comes to 90 m³. This is an explanation of increased biogas generation when mixed with human excreta.

Composition of biogas in term of methane, carbon dioxide and hydrogen sulphide vary with the nature of feed materials. In case of human wastes based biogas, methane composition is 65-66 %. In case of cow dung based biogas plant percentage of methane is 60-61. Under the present study percentage of methane from cow dung and toilet linked biogas plants are 60.4 and 63.8 % respectively. Obviously, toilet linked biogas has higher calorific value than non-toilet linked biogas.

			Table - 5		
Village	e Pather - Day	wise measurement of bio	ogas against each biogas j	plant	
S1.		Arwind Bhai	Manubhai Fikabhai	Bhupendra Bhai Patel	Bhalchardra Bhikha
no.		Sukhabhai Patel	Patel		Bhai Patel
	Date				
1	4.8 2014	Initial reading-00 m ³			
2	5.8.2014	0.67	1.42	0.60	0.89
3	6.8.2014	1.98	2.73	1.24	1.36
4	7.8.2014	2.95	4.22	1.88	2.52
5	8.8.2014	4.04 TGB	5.69 TGB	2.25 TGB	3.65 TGB
6	9.8.2014	4.99	7.06	3.53	4.49
7	10.8.2014	6.18	8.38	3.90	5.25
8	11.8.2014.	7.02	9.85	4.35	6.05
9	12.8.2014	8.20 TGB	11.22 TGB	5.48 TGB	6.98
10	13.8.2014	9.25	12.66	5.92	7.96
11	14.8.2014	10.52	13.99	6.06	8.05
12	15.8.2014	11.50	15.23	7.21	9.04
13	16.8.2014	12.49 TGB	16.25 TGB	8.90 TGB	10.00 TGB
14	17.8.2014	13.52	17.33	10.80	10.64
15	18.8.2014	14.61	18.79	13.82	11.67
16	19.8.2014	15.61	20.32	14.00	12.75
17	20.8.2014	16.67 TGB	21.62	14.50	13.77
18	.21.8.2014	17.94	22.94 TGB	14.90	14.60
19	22.8.2014	18.93	24.25	15.40	15.47
20	.23.8.2014	19.90	25.75	15.81	16.75 TBG
21	24.8.2014	21.15 TGB	27.05	16.58	17.76
22	25.8.2014	21.99	28.95	16.99	18.75
23	26.8.2014	22.85	30.18	17.58	20.03
24	27.8.2014	24.32 TGB	31.38 TGB	18.23 TGB	21.18 TGB

Table - 5

Annex 1 Detailed gas readings per village

TBG - Total gas was burned through cooking burner

Table 6: Adda Village: Details of readings of biogas in four families

Sl.	Date	Ashwin Bhai Patel	Kusum Ben	Mahesh Bhai	Ganga Ben
no.					
1	1.9.2014	Initial reading-	Initial reading-	Initial reading-	Initial reading-
		28.09 m ³	35.86 m ³	19.90 m ³	23.06 m ³
2	2.9.2014	29.35	36.99	20.53	23.40
3	3.9.2014	32.04	38.36	22.14	25.49
4	4.9.2014	34.08 TBG	39.59	23.41	26.56
5	5.9.2014	36.64	41.17	25.04	27.61
6	6.9.2014	38.68	42.68	26.62	29.21
7	7.9.2014	40.27	44.15	27.89	30.62
8	8.9.2014	41.88	45.56	29.07	31.86

9	9.9.2014	43.90 TBG	46.76 TBG	30.30	33.41
10	10.9.2014	45.85	47.11	31.09	34.11
11	11.9.2014	47.83	49.44	32.24	35.85
12	12.9.2014	49.57	50.77	33.00	37.17
13	13.9.2014	51.57	51.98 TBG	34.24	38.17
14	14.9.2014	52.61	53.12	35.15	39.63
15	15.9.2014	54.85 TBG	54.66	36.30	40.66
16	16.9.2014	56.35	55.72	37.49	41.76
17	17.9.2014	57.95	56.85	39.18	43.09
18	18.9.2014	58.36	58.32 TBG	41.04	44.41
19	19,9.2014	59.49	59.65	42.54	45.44
20	20.9.2014	60.35 TBG	60.99	43.87	46.58
21	21.9.2014	61.33	62.38	45.58	47.96
22	22.9.2014	62.60	62.95	46.24	48.30
23	23.9.2014	63.89	64.07	47.55	50.06
24	24.9.2014	65.39	65.20	49.03	51.44
26	25.9.2014	65.51	66.56 TBG	50.28	52.32
26	26.9.2014	66.03	67.90	51.80	53.54
27	27.9.2014	68.04 TBG	69.22	52.85	54.09
28	28.9.2014	69.82	70.46	54.08	54.97
29	29.9.2014	71.56	71.36	55.65	55.21
30	30.9.2014	72.70	72.30	56.86	56.60
31	1.10.2014	74.95 TBG	73.25 TBG	59.14	57.84
32	2.10.2014	75.76	74.31	59.84	58.60
33	3.10.2014	77.82	75.48	61.42	60.11
34	4.10.2014	79.10	76.55	62.35	60.99
35	5.10.2014	80.71 TBG	77.75	64.05	62.36
36	6.10.2014	81.88	78.63	65.70 TBG	63.20
37	7.10.2014	82.60	80.12	67.02	64.42
38	8.10.2014	83.40	81.42 TBG	68.49	65.31
39	9.10.2014	84.64 TBG	82.92	69.88	66.69
40	10.10.2014	85.87	84.02	71.03	67.84
41	11.10.2014	87.18 TBG	85.50 TBG	72.56	68.83
Actual		87.18 - 28.09 =	85.50 - 35.86=	72.56 – 19.90=	68.83 - 23.09 =
produc reading reading	g minus initial	59.09 m ³	49.64 m ³	52.66 m ³	45.77 m ³

Table 7: Village Boriach : Details of measurement of gas from four households

Sl.	Date	Suresh Bhai Ram	Indira Ben Patel	Mani Ben Thakur Bhai	Thakur Bhai Patel
No		Bhai Patel		Patel	
0	11.10.2014	Previous Reading-	Previous Reading	Previous Reading	Previous Reading
Ū	11.10.2014	87.18	72.56	85.50	-68.83
1	12.10.2014	88.14	73.38	86.67	69.63
2	13.10.2014	89.26	74.46	88.15	71.01

3	14.10.2014	90.22 TBG	75.70 TBG	89.38 TBG	72.00 TBG
4	15.10.2014	91.01	76.58	90.47	73.03
5	16.10.2014	92.72	77.59	91.42	74.10
6	17.10.2014	94.27	79.25	92.79	75.24
7	18.10.2014	95.16	80.57	93.51	76.12
8	19.10.2014	96.29 TBG	81.97 TBG	94.50 TBG	76.92 TBG
9	20.10.2014	97.05	82.77	95.82	77.70
10	21.10.2014	98.43	83.66	97.08	78.27
11	22.10.2014	99.52	85.02	98.34	78.88
12	23.10.2014	100.07	86.33	100.00	79.14
13	24.10.2014	101.24 TBG	87.83 TBG	100.72	80.08
14	25.10.2014	103.43	88.85	101.70 TBG	80.66
15	26.10.2014	104.84	90.03	102.60	81.65
16	27.10.2014	105.53	91.51	103.78	82.79
17	28.10.2014	106.69	92.50	104.81	84.04
18	29.10.2014	107.67	93.97	106.00	85.32
19	30.10.2014	108.88	94.81	107.45	86.40
20	31.10.2014	109.74	95.75 TBG	108.65 TBG	87.50 TBG
21	1.11.2014	110.53	97.19	109.75	88.51
22	2.11.2014	111.80 TBG	98.88	111.14	89.64
23	3.11.2014	112.45	99.81	112.05	90.52
24	4.11.2014	114.13	101.25	112.98	91.92
25	5.11.2014	115.50 TBG	102.35 TBG	114.45	92.57
26	6.11.2014	116.70	104.00	115.20	94.98
27	7.11.2014	117.60	105.11	116.18	95.43
28	8.11.2014	118.68	106.15	117.21	96.40
29	9.11.2014	119.23	107.26	118.14	97.38 TBG
30	10.11.2014	120.15 TBG	108.00 TBG	119.45 TBG	98.75
31	11.11.2014	121.37	109.58	120.66	100.01
32	12.11.2014	122,22	110.78	121.69	101.28
33	13.11.2014	123.24	111.89	123.09	102.70
34	14.11.2014	124.23	113.43	124.30	104.17
35	15.11.2014	125.29 TBG	114.43	125.44	105.50
36	16.11.2014	126.31	115.37	126.47	106.60
37	17.11.2014	127.58	117.09	128.07	108.24
38	18.11.2014	128.65	118.33	129.43	109.31
39	19.11.2014	129.65 TBG	119.22 TBG	130.50 TBG	110.69 TBG
40	20.11.2014	130.86	120.25	131.69	111.95
41	21.11.2014	132.04	121.99	132.56	113.07
42	22.11.2014	133.01	122.70	133.40	114.36
43	23.11.2014	133.73	124.14	134.82	115.73
	al gas	133.73 - 87.18=	124.14 - 72.56 =	134.82 - 85.50=	115.73 - 68.83=
production (Final		46.55 m ³	51.58 m ³	49.32 m ³	46.90 m ³
reading minus					
	ous reading)				

TBG Total gas burned through cooking burner and measured.

Table -8 Biogas measurement in the families of Village Unn

Sl. No	Date	Soma Bhai Patel	Chhiba Bhai Patel	Amrit Bhai Patel	Mahesh Bhai Patel
1	23.11.14	Previous Reading 134.82	Previous Reading 133.73	Previous Reading 124.14	Previous Reading - 115.93
2	24.11.14	136.04	134.69	124.86	117.11
3	25.11.14	138.24	136.00	125.89	119.90
4	26.11.14	139.83	136.74	126.42	121.02
5	27.11.14	141.20	137.92	127.30	122.81
6	28.11.14	142.65	138.71	127.86	124.62
7	29.11.14	144.71	140.02	129.09	126.46
8	30.11.14	145.77	140.80	129.80	127.49
9	1.12.14	146.96	141.39	130.23	129.52
10	2.12.14	148.04	142.05	131.00	131.05
11	3.12.14	150.89	143.55	132.15	134.00
12	4.12.14	151.48	144.02	132.75	135.75
13	5.12.14	153.58	145.23	133.49	137.90
14	6.12.14	154.86	145.93	134.39	139.00
15	7.12.14	155.78	146.87	135.05	140.98
16	8.12.14	157.75	147.61	135.84	142.34
17	9.12.14	158.80	148.05	136.09	144.89
18	10.12.14	160.99	149.48	137.10	145.55
19	11.12.14	161.93	150.00	137.61	146.53
20	12.12.14	162.95	150.42	138.76	147.99
21	13.12.14	164,40	151.09	139.32	149.38
22	14.12.14	165.89	152.42	140.20	151.10
Tota (Fina minu readi	s previous	31.07 m ³	18.69 m ³	16.06 m ³	35.17 m ³