

Choose certainty. Add value.

Technology Options for Sustainable Wastewater Solutions

Sub-regional Conference on Wastewater Management: Promoting Innovations and Sustainable Investments

Asian Development Bank, Manila 29-31 January 2013

Dr. Andreas Hauser, Director of Water Services, TÜV SÜD

Agenda

- From Conventional to Closed-Loop Sanitation Systems
- Aspects of Waste Water Solutions
- Energy Recovery
- Waste Water Treatment Solutions
- Innovative Waste Water Treatment Components
- Example of a Sustainable Urban Decentralised Waste Water Solution
- Conclusion
- Company Profile

Conventional Sanitation is not Sustainable

- Infiltration of nutrients
- Contamination by Chemicals (Emerging Contaminants)
- High Water Consumption
- High Energy Consumption

Closed-Loop Sanitation

- Recycle of nutrients
- Re-use of water
- Energy recovery from waste water
- Alternative collection system
- Advanced treatment technologies
- Integrated Waste Water Management
- → Technologies will be integrated Water + Energy + Nutrients
- \rightarrow Solutions will be complex

Water – Energy – Nutrients >>>> Integrated Systems

- Treatment
 - Mechanical: filter, membranes
 - Chemical:
 - Biological: aerobic, anerobic
- Energy Conversion
 - Incineration
 - Gasification: syngas production
 - Anaerobic digestion
 - Bio-electrochemical systems
 - Thermal recovery
- Recycling of Nutrients
 - Phosphorus
 - Nitrogen
- System
 - central, decentralised
 - Integration: Power, Waste, Reuse/Recycle

Energy Recovery: Waste Water and Food Blending

Energy available in waste water is 2 to 4 times the amount required for treatment

to disposal or reuse

Source: George Tchobanoglous: *Wastewater Treatment Trends in the 21st Century that will impact water reuse projects*, 3rd Sede Boqer Conference, 2012

Conceptual Future WWTP Schematic

Integration of treatment, energy and product recovery

Source: George Tchobanoglous: *Wastewater Treatment Trends in the 21st Century that will impact water reuse projects*, 3rd Sede Boger Conference, 2012

Conceptual Future WWTP Schematic without Biological Treatment

Integration of treatment, energy and product recovery

Source: George Tchobanoglous: *Wastewater Treatment Trends in the 21st Century that will impact water reuse projects*, 3rd Sede Boger Conference, 2012

TÜV SÜD

Innovative Waste Water Treatment Components

SUD

Innovative Components play out their full potential only, when deployed properly into complete System!

Membranes: Polymers, Ceramics

- High efficiency
- Enable Reuse

Electromagnetic SeparationFast Separation of solids with small footprint

http://www.agitomachinery.com/

 Bio-Sorption
Concentration of bio-solids for energy conversion

Microbial Fuel Cells

• Direct conversion from chemical into electrical energy

Cathodic limitations in microbial fuel cells: An overview Pulse PowerPretreatment for fast biodegradation

Electro-DewateringFast and efficient dewatering of sludge

http://w3.unisa.edu.au/iwri/futurestude nts/honsprojects/electrokineticdewater ing.asp

TÜV SÜD

30/01/2013

Example: Decentralised Urban Waste Water Treatment¹

 innovative and flexible infrastructure system with high resource efficiency concerning energy, nutrients and water

- links water supply and wastewater disposal
- high degree of user comfort

1) Source: DEUS21, Fraunhofer IGB, Prof. Troesch, 2013. www.deus21.de

Example: Decentralised Urban Waste Water Treatment¹

Results

Energy demand vs. Energy potential of anaerobic psychrophilic waste water treatment with DEUS 21 concept

Waste Water Treatment facility

1) Source: DEUS21, Fraunhofer IGB, Prof. Troesch, 2013, www.deus21.de

Recycling and recovery of phosphor components is also possible: Precipitation of Mg-ammonia-phosphate

- Sustainable solutions are complex and requirement specific
- Efficient waste water solutions integrate water, waste and energy as much as possible
- Different technologies from different vendors fit to different situations there is no "one solution fits all"
- Consistency, interoperability, interchangeability must be ensured

The Company Services

Testing & product certification	Inspection	Auditing & system certification	Knowledge services	Training
Chemical, physical, mechanical, electrical and environmental testing and product certification.	Product, system, building, plant and infrastructure inspection.	Audits system certification in a variety of fields including quality, safety, energy, social compliance and environment.	Safety, quality, risk, environmental protection and regulatory advisory.	Training in work safety, technical skills, management systems and executive programs.

A. Hauser

The Company Global Expertise. Local Experience

TÜV SÜD	30/01/2013	A. Hauser	Slide 14	τυν®

