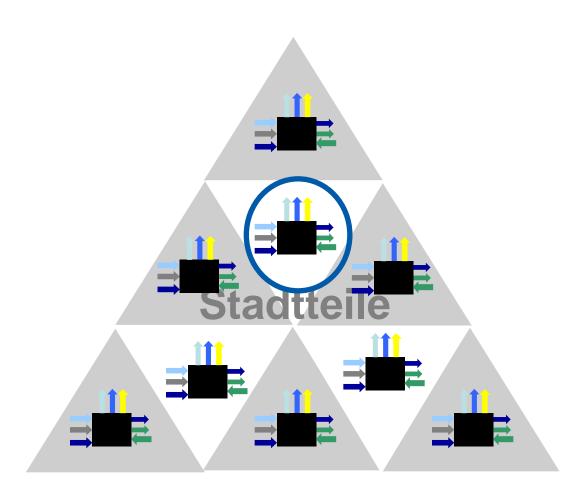
Semizentrale Ver- und Entsorgungssysteme

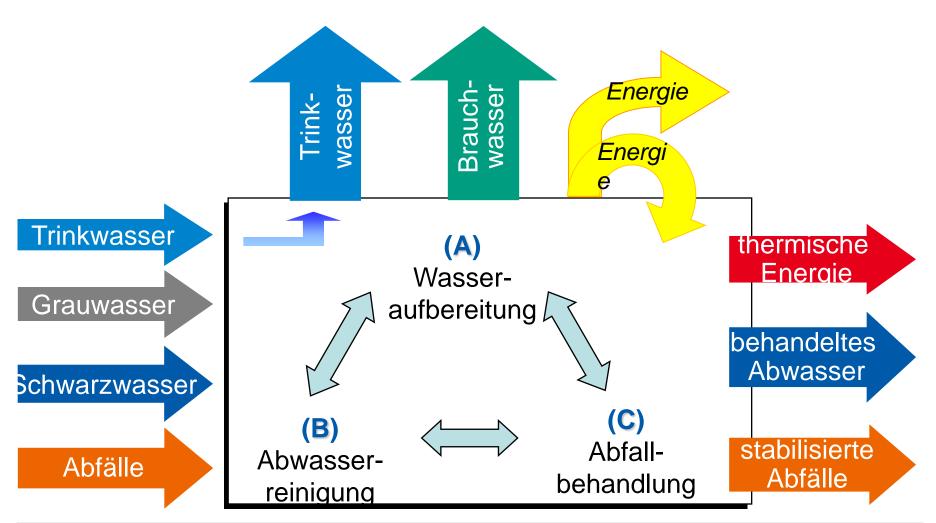
Integrierte Lösungen für innerstädtische Grauwasserwiederverwendung



Technische Universität Darmstadt, Institut IWAR

Prof. Dr.-Ing. Peter Cornel Dr.-Ing. Susanne Bieker

Der Semizentral Ansatz – integrierte Behandlung auf Quartiersebene



Semizentral

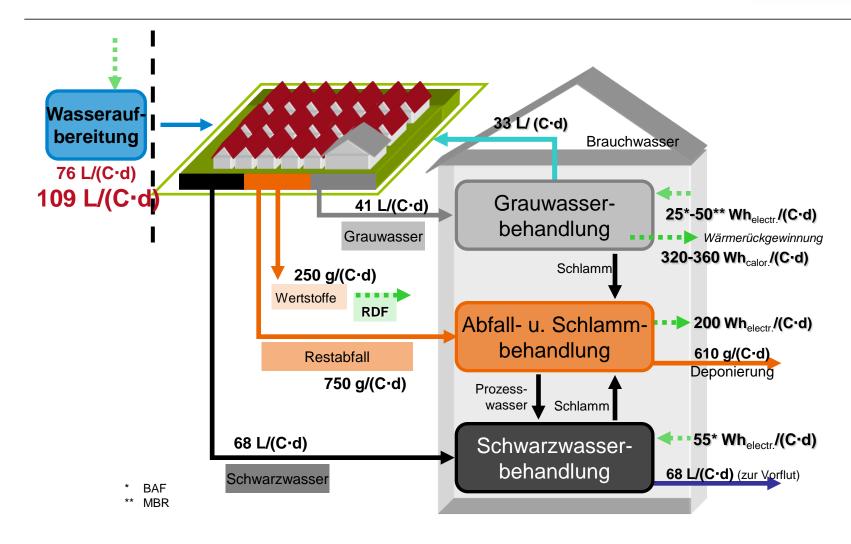
Einsparpotenziale und systemische Vorteile

Semizentral – was ist anders?

Eine Frage der Größe

- Wasserwiederverwendung erfordert kleine(re) kompakte Systeme
 - Minimierung der Investitionskosten für Leitungen und Kanäle
 - Minimierung des Energieaufwandes für Aufbereitung und Transport
 - Minimierung von Wasserverlusten
- Wärmerückgewinnung nahe am Warmwasseranfall
 - beispw. Nutzung des thermischen Energiepotenzials im Grauwasser (aus Duschabläufen, Waschmaschinen, ...)
- Hohe Qualitätsanforderungen und professioneller Betrieb erfordern Mindestgrößen (Nutzung von Skaleneffekten)
 - → Die "Schnittmenge" der Anforderungen führt zu semizentralern Größenordnungen ("so klein wie möglich, so groß wie nötig")

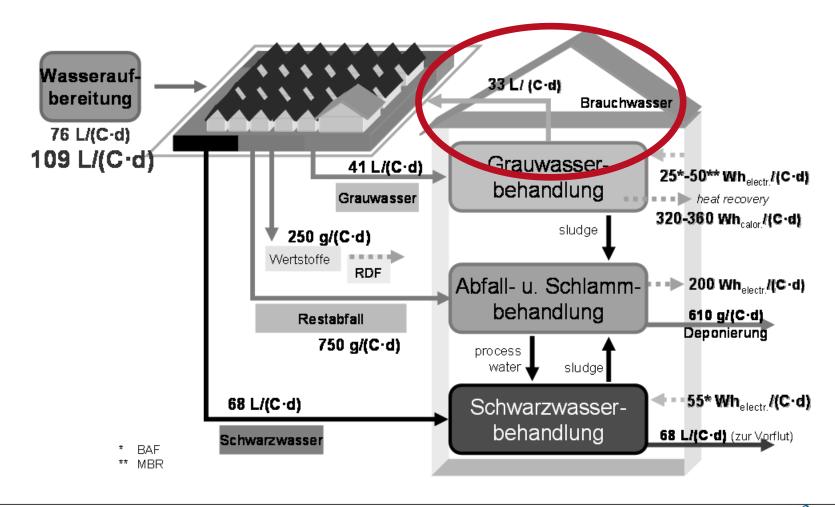
Semizentral – was ist anders?


Eine Frage der Integration

- energieautarker Betrieb erfordert integrierte (anaerobe) Behandlung von biologischen Abfällen (gemeinsam mit Klärschlamm)
- Flexibilität erfordert Modularität in Technik und Größeneinheiten.
- angepasste Lösungen erfordern ganzheitliche Ansätze Berücksichtigung juristischer, organisatorischer und technischer Bedingungen sowie Nutzerinteressen und wirtschaftlichen Erfordernisse
- → Zusammenführung der Erfordernisse führt zu integrierten Ansätzen, die
 - Räumliche Planung und Fachplanungen ebenso zusammenführt wie
 - die verschiedenen Fachplanungsebenen (Wasserversorgung, Abwasserreinigung und Abfallbehandlung)

Der Semizentral Ansatz

Einsparpotenziale



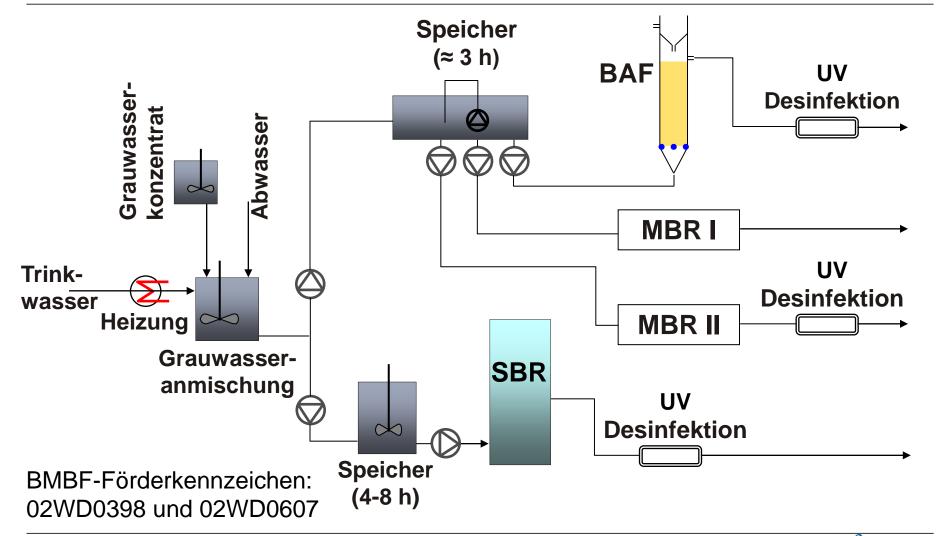
- Einsetzbarkeit von semizentralen Ver- und Entsorgungssystemen
 - entwickelt für den Neubau in schnell wachsenden urbanen Räumen
 - ebenso einsetzbar in Bereichen, in denen Bestand und Neubau kombiniert werden (Beispiel Hanoi) und
 - für die Nachrüstung in Sanierungsgebieten
- Der integrierter semizentraler Infrastrukturansatz
 - ermöglicht eine Wassereinsparung von 30% und mehr
 - Ist technisch mit verschiedenen Verfahren realisierbar
 - ermöglicht energieautarken Betrieb
 - ermöglicht Wärmerückgewinnung aus Grauwasser

Innerstädtische Wasserwiederverwendung

- nicht nur eine Frage des Ressourcenschutzes...

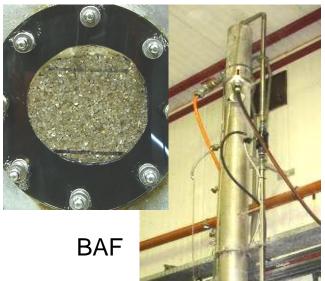
Grauwasseraufbereitung

ein Verfahrensvergleich



- Anforderungen
 - verlässlich und robust
 - modular einsetz- und erweiterbar
 - geringer Flächenbedarf
 - geringe Emissionswerte (Lärm, Geruch, Aerosole)
- Untersuchte biologische Grauwasserbehandlungsverfahren
 - Biofilter (biological aerated filter)
 - MBR (membrane bioreactor)
 - SBR (sequential batch reactor)
- Im Rahmen der vom BMBF geförderten Projekte "Semizentrale Ver- und Entsorgungssysteme für urbane Räume Chinas"

Förderkennzeichen 02WD0398& 02WD0607


Verfahren zur innerstädtischen Grauwasserreinigung

Pilotanlage-BAF, SBR, MBR

SBR

MBR 1

MBR 2

Ergebnisse der halb-technischen Versuche

 BAF, MBR und SBR sind grundsätzlich geeignet das anfallende Grauwasser entsprechend der Chinesischen Standards zur innerstädtischen Wasserwiederverwendung zu behandeln

Parameter	BSB ₅	anionische Tenside	coliforme Bakterien	Trübung
	[mg/L]	[mg/L]	[Anzahl/L]	[NTU]
Zulauf	150	65	104	80
Anforderungen chin. Standard	<10	<1	<3	<5
BAF	~ 4	~ 0.8	< 3 nach UV Desinfektion	5 bei CSB Fracht < 8 kgCOD/(m³·d) 5 bei CSB Fracht > 8 kgCOD/(m³·d)
MBR	< 3	< 0.5	< 3 ohne Desinfektion	< 1
SBR	~ 5	~ 0.6	< 3 nach UV Desinfektion	30 < 5 (mit Polymerzusatz)

Ergebnisse: Auslegungs- und Betriebsparameter - 1

		BAF	MBR ¹⁾	SBR
Raumbelastung	kg CSB/(m³-d)	<7	0.6	0.85
erforderliches Reaktorvolumen (netto)	L/C	4.1	9.8	18
Fußabdruck (ohne Aggregate, netto)	m²/1.000 C	8.0	1.6	3.3
Minimale Anzahl an Reaktoren	-	3	2	3
erforderliches Volumen für zusätzlichen Komponenten	L/C	$3.9^{2)}$	2.5 ³⁾	82)
Gesamtvolumen	L/(C·d)	8	12.3	26
Energiebedarf	kWh/m³	0.14	0.5–0.7	0.3 mit Injektor 0.1 mit feinblasiger Belüftung

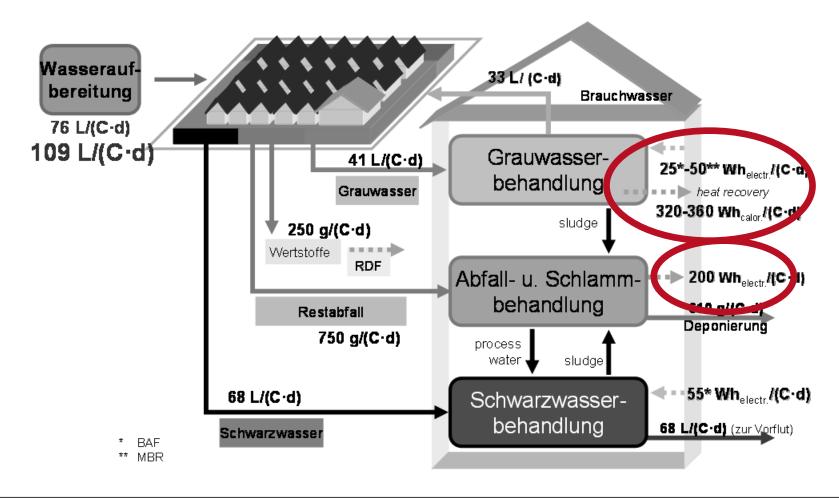
¹⁾Schlammalter ca. 30 d; ²⁾ Zulaufspeicher; ³⁾Ablaufspeicher (wenn nicht im Reaktor integriert)

Ergebnisse: Auslegungs- und Betriebsparameter - 2

			1400	
		BAF	MBR	SBR
TS-Gehalt	g/L		10–12	3–4
Schlammalter	d		30	3–4
spez. Sauerstoffbedarf	kg O ₂ /kg BSB ₅	0.6	1	1
Spez. Schlammproduktion	kg TS/kg BSB ₅	0.6	0.6	0.8
Spülwasser + Überschussschlamm	vol%	16	5	7
Belüftungssystem		grob- blasig	fein- blasig	Injektor o. feinblasig
Chemikalien		keine	Säure & Hypochlorid ¹⁾	Polymer ²⁾
Qualifikation des Betriebspersonals		moderat / hoch	hoch	moderat

¹⁾ Für Membranreinigung ²⁾ Für Reduzierung der Trübung im Ablauf

Zusammenfassung der Ergebnisse



- BAF: kompakt und energieeffizient
 - + geringster Energiebedarf
 - + geringster Flächenbedarf
 - + kein Bedarf an chemischen Zusätzen
- MBR: beste Ablaufqualität
 - + beste Ablaufqualität
 - höchster Energiebedarf (crossflow)
 - Membranreinigung erfordert Chemikalieneinsatz
- SBR: robust und einfach zu betreiben
 - +Erprobtes Verfahren mit geringem Anspruch an Betrieb (Ausbildung des Betriebspersonals)
 - höchster Flächenbedarf
 - Zusatz von Polymeren erforderlich

Energie- und Wärmerückgewinnung

- nicht nur eine Frage des Ressourcenschutzes

Energieinhalt im Abwasser

Potentielle Energie

- direkt zur Höhe proportional (Vernachlässigung von Reibungsverlusten)
- bei Wasserverbrauch von 130 L/(E·d), 50 m Höhe: $E_{pot} = m \cdot g \cdot h = 130 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 50 \text{ m} = 0.0177 \text{ kWh/(E·d)}$

Wärmeenergie

- aus Warmwassererzeugung, überwiegend Gra
- Bei einer Grauwassermenge von z. B
 E_{therm} = c_p · ΔT · m = 15 K · 1.16
 Chemisch gebunden
 Aus dem des Cainhalt ganische Inhaltsstoffen

Chemisch gebunden

- Cnt:110-120 g/Einwohner
- hethan pro kg CSB → 3,49 kWh/kg CSB (Heizwert Methan: 9,97 kWh/m³)
- E_{chem} = 3,49 kWh/kg CSB · 0,12 kg CSB/(E·d) = 0,42 kWh/(E·d)

Wärmerückgewinnung aus Warmwasser

- Die Warmwassererzeugung ist mit ca. 21 kWh/m³ nach der Heizung größter Energieverbraucher im Haushalt.
 - 17 % des Stromverbrauchs
 - 14 % des Erdgasverbrauchs (BDEW 2008)
- Die Wärme geht i.d.R. mit dem Abwasser ungenutzt verloren

Alternative:

Wärmerückgewinnung aus Dusche, Bad und Waschmaschine mittels Wärmetauscher

Rückgewinnungspotential > 50%

Quelle: Pontos AquaCycle von HansGrohe

Innerstädtische Einsatzmöglichkeiten von Brauchwasser

Zusammenfassung und Ausblick

- Neue Herausforderungen bedingen ressourcenoptimierte Infrastruktursysteme
- Dynamiken in der Stadt- und Siedlungsentwicklung sind derzeit einzigartig schnell.
 - spin neue Anforderungen in punkto Flexibilität und Anpassungsfähigkeit an sich verändernde Rahmenbedingungen
- Integrierte semizentrale Ver- und Entsorgungssysteme bieten eine erhöhte Ressourceneffizienz
 - Wassereinsparungen von 30% und (deutlich) mehr
 - energieautarken Betrieb (integrierter Ver- und Entsorgungszentrum)
 - Potenziale zur Wärmerückgewinnung

Semizentrale Ver- und Entsorgungssysteme

Integrierte Lösungen für innerstädtische Grauwasserwiederverwendung

Technische Universität Darmstadt, Institut IWAR

Prof. Dr.-Ing. Peter Cornel Dr.-Ing. Susanne Bieker

BMBF-Förderkennzeichen: 02WD0398 und 02WD0607