

The Sanitation Challange Wageningen, May 19-21 2008

Inka Kaufmann Alves Marcel Kalsch, Tanja Meyer

Implementation of new sanitation concepts in a city scale

- finding long-term strategies by mathematical optimisation

Content Overview

Background and Motivation

Question: What's the optimal way to the favoured future system?

Methods

- Development of a mathematical optimisation model
- Application case study

Implementation

- Scenarios and specifications
- Results and discussion
- Conclusions and Outlook

Background and Objectives

What's the present state?

How to get there?

What do we aim for?

centralised supply and disposal concepts

- apparently not sustainable
- numerous disadvantages

changes in exposure to wastewater

- stormwater: turning away from piped drainage systems
- sewage: discussion of alternatives for disposal

How can new sanitation concepts be realised in existing systems?

high demand of rehabilitation

intensive reconstruction work /extensive efforts

- → every step of reconstruction should ecologically and economically benefit the future
- \rightarrow new strategies for "hot plug-in" are required

Development of a mathematical approach

Mathematical Model

Application

University of Kaiserslautern Urban Water Management

Implementation - future state

future state and conditions

- **example** of future state for implementation
 - + Scenario 1: seperated treatment of blackwater, greywater should be treated centrally in WWTP
 - stormwater runoff and wastewater should not be mixed any more, achieve natural stormwater management

6

Implementation - future state

- period of consideration
 - 50 years of conversion + 30 years of 'maintenance'

objective functions: economic costs

- total project costs with 3 % interest rate
- budget 2.5 million € / time step (5 years)

objective functions: ecologic costs

- many different criteria count to these costs

3 different modifications

- a) no ecological criteria (minimise only econ. costs)
- **b)** only 'resources protection' should be minimised
- **c)** 3 criteria (resources protection, natural water cycle, emissions)
- weight economic costs : ecologic costs = 1:1

Results – Scenario 1 (blackwater)

University of Kaiserslautern Urban Water Management

Results – activities S1c

Conclusions and Outlook

- To reach a future state different optimal solutions are possible!
 - choice of criteria is essential
 - not only apparent criteria should be chosen for minimisation!
- only the discussion of local deciders with engineers can lead to definite choice of solution
 - difficult!
 - → potential of the approach in making possible to show all impacts in detail when calculating different scenarios
 - \rightarrow big potential for complex systems!

University of Kaiserslautern Urban Water Management

The Sanitation Challange Wageningen, May 19-21 2008

Inka Kaufmann Alves Marcel Kalsch, Tanja Meyer

Implementation of new sanitation concepts in a city scale

- finding long-term strategies by mathematical optimisation

