A Flowstream Approach for Sustainable Sanitation Systems

Elizabeth Tilley and Christian Zurbrugg EAWAG/ Sandec May 20, 2008 Sanitation Challenge- Wageningen

Eawag: Swiss Federal Institute of Aquatic Science and Technology

Conventional solutions and Innovations

- Improvements in sanitation coverage are not as expected
- Many technologies available, but decision-makers are often not aware
- Providing "toilets" to people does not necessarily solve the sanitation crisis.

- NETSSAF coordination project for West Africa
- One task to better systematize all potentially feasible solutions
- Ensure that waste is managed from cradle to grave/reuse

What is a Sanitation System?

- The words 'Sanitation System' are used frequently but without being clearly defined
- Without a overview of the flows **into** and **within** the system it is difficult to design something sustainable
 - e.g. the generation of Faecal Sludge
 - e.g. transport is often overlooked as a important step
- Propose a method of defining the parts of and method for visualizing and designing ,'cradle to grave' systems

A common language

- Except for a few standard terms (blackwater) here is no common language for describing the parts of a system
- By **defining** and **differentiating** between the parts of a system, a standard design method can be implemented using the following:
 - Products
 - Processes
 - Technologies
 - Flowstream

1+酢酸3加+濃硫 acatic acid CH3COOH + C2H5OH= acetic acid ethanol

Products- the reason for the system

- Products are classically called 'wastes' although need not be wasted
- Some products are generated at **intermediate steps**
- Products are all very different in their composition, volume, reuse potential, pathogenicity, etc., and therefore should be considered separately
- Technologies process different products differently;

'round hole-square peg' approach

Products (raw inputs & newly generated products)

- Urine- undiluted urine that is not mixed with faeces or water
- Faeces- (semi-) solid excrement without any urine or water

Excreta- mixture of urine and faeces without water

 Water used for the washing of food, clothes, dishes, people and things. It does not contain excreta but it still contains pathogens and organics

Blackwater- the mixture of urine, faeces and flushing water + anal cleansing water / dry cleansing material

Faecal Sludge- is the general term for the undigested, or partially digested slurry or solid that results from the storage or treatment of blackwater or excreta

• Anal Cleansing Water- the water used to wash oneself after urinating or defecating

6

Processes

- Products move through Processes

- Processes are ways of grouping technologies
- Technologies within the same Process, perform the same (general) **task, or process**
- Each technology performs the task, but in a different way and with a different degree of efficiency
- By classifying techologies by 'task' or into Processes, they can more easily be linked and organized

Processes- Groups of Technologies

Process Title	Description	
User Interface	Describes the way in which users access and interact with the sanitation system	
On-site Collection, Storage and Treatment	Describes the technologies that can be used at the household/compound level to collect, store and (partially) treat different flowstreams	
Transport	Describes the way in which flowstreams are transferred from the household to a centralized treatment/use facility	
Treatment off site	Describes the technologies used to reduce the pathogenicity and/or nutrient loads of the flowstreams	
Reuse	Describes the technologies and /or methods which allow some benefit to be derived from a flowstream	
Disposal	Describes the technologies and/or methods which allow the flowstreams to be returned to the environment in a benign/non-detrimental way	

Technologies- pieces of the puzzle

- Technologies are product specific methods or tools used to collect, store, transform, move or dissiptate a product
- A product will be processed by a series of technologies
- Names are not 'standardized'
 - will always be regional conventions
 - the proposed list is not exhaustive

Technologies-Grouped by Process

Flowstreams are:

The SUM of the products that travel through the processes

+

The product-specific technologies through which the products travel

Systems are:

The SUM of the Flowstreams

Conceptualizing a Sanitation System

No.	System name	Flowstreams
1	Wet mixed blackwater and greywater system with offsite treatment	 blackwater mixed with greywater flowstream faecal sludge flowstream
2	Wet mixed blackwater and greywater system with onsite treatment	blackwater mixed with greywater flowstreamfaecal sludge flowstream
3	Wet blackwater systems (blackwater separated from greywater)	 blackwater flowstream faecal sludge flowstream greywater flowstream
4	Wet urine-diversion system	 urine flowstream/ yellowwater brownwater mixed with greywater flowstream faecal sludge flowstream
5	Dry greywater-separate system	excreta flowstreamgreywater flowstream
6	Dry urine- and greywater-diversion system	 urine flowstream faeces flowstream greywater flowstream
7	Dry all mixed systems	 excreta mixed with greywater flowstream

Figure 1. Wet mixed blackwater and greywater system with offsite treatment

In Conclusion

- By building a system up using pre-defined...
 - PRODUCTS which travel through
 - PROCESSES which contain
 - TECHNOLOGIES which can be selected according to the context and then grouped into
 FLOWSTREAMS which can be combined into
 SYSTEMS
- A more thorough assessment, and plan of the sanitation system can be achieve, thus ensuring increased efficiency and reduced redundancy.
- Next steps include stakeholder workshops and dissemination among target users; hard and interactive digital products
- Field testing, refinement and revision

