A learning and decision methodology for drainage and sanitation improvement in unplanned areas in developing cities

> Joost van Buuren (WU-ETE) Astrid Hendriksen (WU-ENP)

Sanitation Challenge May 19 – 21, 2008

CONTENTS

- DRAINAGE AND SANITATION DEVELOPMENT
- PARTICIPATORY LEARNING & DECISION METHOD
 - STAKEHOLDER ROLES
 - DECISION SUPPORT
- WORKSHOP EXPERIENCE
- CONCLUSIONS

OUTLINE OF DRAINAGE AND SANITATION DEVELOPMENT DURING URBANIZATION

A NEIGHBORHOOD IS BUILT.....

- PIT LATRINE, GREYWATER TO SOIL
- POUR-FLUSH LATRINE, GREYWATER TO SP
- PF LATRINE, GREYWATER TO SEPTIC TANK AND sp

INCREMENTAL DEVELOPMENT

FROM ON-SITE SANITATION TO SETTLED COMBINED SEWER SYSTEM

Mixed solutions

- In a developing city we find several systems now...often they are not adequate
- Stakeholders wonder what options there are to improve concrete situations
- Future infrastructure: unified/centralised or mixed?
- Intervention preparation and decisions:
 Business-as usual: providers and their experts
 Participatory approach: all stakeholders play a role in design and system selection

DESIGN STAGE OF INFRASTRUCTURE

STAKEHOLDERS NEED:

- TO BE INFORMED ABOUT A WIDE RANGE OF ALTERNATIVE DRAINAGE AND SANITATION OPTIONS
- METHOD TO SELECT THE BEST OPTION
- = MULTICRITERIA DECISION ANALYSIS = PROACT (HAMMOND, RAIFFA, KEENEY, 1999)

The PROACT METHOD consists of 5 STEPS

WE CARRY IT OUT IN A STAKEHOLDERS' WORKSHOP (EXPERTS AND NON-EXPERTS)

STAKEHOLDERS' ROLES

ROLE OF TECHNICAL EXPERTS

THEY KNOW:

- A VARIETY OF OPTIONS
- OPTIONS' PERFORMANCE DEPENDENT ON CIRCUMSTANCES THEY ADVISE THE NON-EXPERTS AND POLITICIANS

ROLE OF NON-EXPERTS (POLITICIANS, USERS):

THEY INFORM ABOUT:

- CLARIFICATION OF THE SITUATION
- THE REQUIREMENTS TO GOOD SOLUTIONS
- PREFERRED OPTIONS

HAVE TO BUILD, USE AND PAY THE INFRASTRUCTURE

STAKEHOLDERS' ROLES IN THE DECISION PROCESS

	PROBLEM CLARIFI- CATION	OBJECTIVES & ALTERNATIVES	CONSE- QUENCES TABLE	TRADE-OFF
EXPERTS		X	X	
NON- EXPERTS	X	X		Х

- NON-EXPERTS: DECISION MAKERS, INTEREST GROUPS, USERS/ REPRESENTATIVES
- EXPERTS: PLANNERS AND INFRASTRUCTURE SPECIALISTS

LEARNING SUPPORT: ALTERNATIVES

 PARTICIPANTS ASK THEMSELVES: WHAT ARE ALTERNATIVE SOLUTIONS TO OUR PROBLEM?

ALTERNATIVES ARE: SANITATION CHAINS MADE UP OF <u>BUILDING</u> BLOCKS

BUILDING BLOCKS OF DRAINAGE AND SANITATION SYSTEMS

FUNCTIONAL ELEMENT	BUILDING BLOCK		
WATER SUPPLY	PIPE/CARTAGE		
HOUSEHOLD APPLIANCES	TOILET, KITCHEN SINK, SHOWER, ETC		
ON-SITE WASTEWATER	TREATMENT		
	RECYCLING AND REUSE		
STORMWATER/RUNOFF	TRANSPORT		
	TREATMENT		
	REUSE		
OFF-SITE WASTEWATER	TRANSPORT		
	TREATMENT		
	RECYCLING AND REUSE		
SLUDGE HANDLING	TREATMENT & DISPOSAL		
	REUSE		

SYSTEMS FOR DRAINAGE AND SANITATION

POSSIBLE DIFFERENCES TO DECIDE ABOUT:

- ON-SITE OR OFF SITE TREATMENT
- VARIOUS TOILET SYSTEMS
- COMMUNAL/ INDIVIDUAL TOILETS
- VARIOUS TYPES OF SOURCE-SEPARATION (1-4 STREAMS) AND CONNECTED REUSE
- NUMBER OF PIPE NETWORKS (1, 2 OR 3)
- STORAGE BASINS FOR COMBINED SEWAGE: YES
 OR NO
- TREATMENT OF STORMWATER: YES OR NO
- PUMPING OF SEWAGE: YES OR NO

INDIVIDUAL AND COMMUNAL ON-SITE OPTIONS

Option 1: dry AD toilet + cartage, greywater to subsoil. Stormwater not sewered

Stormwater UT Cartage Greywater SOAKAGE PIT

Option 2 Dry UD toilet, urine and faeces collected by cartage, greywater to soakage pit. Stormwater not sewered

WAGENINGEN UNIVERSITY ENVIRONMENTAL TECHNOLOGY 8 options 15

Option 14 Settled sewer system: stormwater and sewage treated jointly

TOTAL: 12 OPTIONS BASED ON SINGLE PIPE NETWORK

ONE PIPE NETWORK: HOUSEHOLD SOURCE SEPARATION

Option 25: Vacuum toilets, anaerobic blackwater treatment + Biogas, N and P recovery, combined treatment of storm- and grey water

ONE PIPE NETWORK, HOUSEHOLD SOURCE-SEPARATION

Option 24: UD dry toilets, combined treatment of storm- and grey water, urine and faecal matter treated separatedly

3 STREAMS

TWO PIPE OPTIONS/ STORMWATER AND SEWAGE SEPARATED

Option 31: Separated sewer system: stormwater and sewage though different pipes

Total 30 OPTIONS based on a two-pipe network

SETTING OBJECTIVES

 PARTICIPANTS ASK THEMSELVES: WHAT WOULD DISTINGUISH BETWEEN A GOOD SOLUTION AND A BAD ONE TO SOLVE OUR PROBLEM?

OBJECTIVES FOR DRAINAGE AND SANITATION INFRASTRUCTURE

	OBJECTIVES	CRITERIA		
1	TECHNICAL FUNCTIONALITY	COMPATIBILITY WITH LOCAL CONDITIONS		
2		COMPLIANCE WITH LOCAL POLICY FRAMEWORK		
3		RELIABILITY AND FLEXIBILITY		
4	ENV ^L PROTECTION AND RESOURCES CONSERVATION	EMISSIONS TO WATER, ATMOSPHERE AND SOIL		
5		RESOURCES RECOVERY		
6	SOCIAL MANAGEABILITY	ADEQUATE MANAGEMENT BY PROVIDERS		
7		USER ACCEPTANCE		
8	ECONOMIC DESIRABILITY	ECONOMIC EFFCIENCY		

CONSEQUENCES OF THE ALTERNATIVES

 PARTICIPANTS ASK THEMSELVES: HOW DO OUR DIFFERENT ALTERNATIVES/OPTIONS PERFORM WITH REGARD TO OUR OBJECTIVES?

RESULT : PERFORMANCE TABLE

Example of PERFORMANCE MATRIX

DISTR 6, HCMC, VIETNAM

PERFORMANCE SCORES: 0 - 100

		ALTERNATIVES			
OBJECTIVES	NORM. WEIGHT	1	2	3	4
TECHNICAL FUNCTIONALITY	0.4	30	90	30	90
ENVIRONMENTAL PROTECTION AND RESOURCE RECOVERY	0.1	90	90	90	90
USER AND PROVIDER ACCEPTANCE	0.3	80	40	80	40
NET COSTS	0.2	30	60	20	40

WAGENINGEN UNIVERSITY ENVIRONMENTAL TECHNOLOGY

AFTER WEIGHTING THE CRITERIA.....

APPROPRIATENESS OF 4 DRAINAGE AND SANITATION OPTIONS IN D.6 OF HO CHI MINH CITY

WORKSHOPS

 2 WORKSHOPS (2 DAYS EACH) IN HO CHI MINH CITY, VIETNAM, IN WHICH PROACT WAS APPLIED

(ISSUE-2 PROJECT)

CAPACITY BUILDING WITH PROACT LEARNING AND DECISION DATA BASE

STRONG:

- GENERATION OF ALTERNATIVES AND OBJECTIVES
- TRADING-OFF METHOD

TO BE IMPROVED STILL: CONSEQUENCES TABLE

CONCLUSIONS: WHERE DOES PROACT MAKE A DIFFERENCE?

- Data base facilitated quick understanding how to compose sanitation chains
- Intensive mutual learning

- Experts inform about environmentally most sustainable options

- Non-experts inform about feasible and most preferred options

- Shared objectives and alternatives/options
- Processing consequences required more time and advice than available (12 hrs)
- A basis for a decision that is well supported

THANK YOU FOR YOUR ATTENTION..

• E-mail: joost.vanbuuren@wur.nl

POPULAR HOUSING: PROBLEM AREAS OF THE FUTURE

WAGENINGEN UNIVERSITY ENVIRONMENTAL TECHNOLOGY

TWO PIPE OPTIONS/ STORMWATER AND SEWAGE SEPARATED SOURCE-SEPARATED STREAMS

Option 66: Vacuum toilets, separated handling of storm- , black and grey water

Option 64: Dry UD toilet + settled enhanced separated sewer system

WAGENINGEN UNIVERSITY ENVIRONMENTAL TECHNOLOGY