

The Sanitation Challenge

International Conf. on New Sanitation Concepts and Models of Governance 19-21 May 2008 | Wageningen | Netherland

#### **Henning Knerr**

# Separated grey- and blackwater treatment by the Komplett water recycling system

A possibility to close domestic water cycle



**University of Kaiserslautern** Institute of Urban Water Management



siwawi



# **Presentation Outline**

### Introduction

### Material & Methods

- greywater pilot plant
- blackwater pilot plant

### Results & Discussions

- purification efficiency of the pilot plants
- comparison requirements for reuse
- Summary & Outlook

#### University of Kaiserslautern







# Background



Federal Ministry of Education and Research

siwawi

- alternative sanitation concept, which base on the aims of the recycling management
  - separation of different wastewater flows
  - appropriate treatment
  - closed loop systems for water and nutrients



#### **University of Kaiserslautern**



- creation of a complete package, from in-house technology to automation, remote control technology and information system up to the utilization of the solids
- development of a key technology on base of the best available technology of different branches
- development of a self-sufficient, decentralized and intelligent high-tech-system with
  - ... independence of centralized infrastructure systems for water supply, wastewater and waste disposal
  - ... independence from weather influences

**University of Kaiserslautern** Institute of Urban Water Management





# **Basic Idea**



#### **University of Kaiserslautern**











### fundamental phase

- characterization of grey- and blackwater
- pretest biological treatment
- test plant using MBR-technology (5 i.e.)
  → generating of reference values for the pilot plant
- technical scale phase
- pilot scale phase

#### **University of Kaiserslautern**













### fundamental phase

### technical scale phase

- integration of further plant components for water purification in a technical scale plant (20 i.e.)
- development of operation strategies to achieve optimum water qualities
  - $\rightarrow$  greywater: drinking water quality
  - $\rightarrow$  blackwater: reuse for toilet flushing or irrigation
- operation phase: 01|2007 10|2007
- pilot scale phase

#### University of Kaiserslautern











### fundamental phase

### technical scale phase

- integration of further plant components for water purification in a technical scale plant (20 i.e.)
- development of operation strategies to achieve optimum water qualities
- operation phase: 01|2007 10|2007
- development of sanitary products and intelligent diagnosis system
- pilot scale phase

#### University of Kaiserslautern











### fundamental phase

- technical scale phase
- pilot scale phase
  - integration of Komplett-System in an office building as a demonstration plant (150 - 200 i.e.)
  - close of water cycles
    - $\rightarrow$  greywater: showers, washing machines
    - $\rightarrow$  blackwater: toilet flushing
  - coupled system of sanitary equipment, treatment and visualization

#### **University of Kaiserslautern**











fundamental phase

- technical scale phase
- pilot scale phase
  - integration of Komplett-System in an office building as a demonstration plant (150 - 200 i.e.)
  - close of water cycles close of water cycles
  - coupled system of sanitary equipment, treatment and visualization
  - acceptance of users
  - enrichment of certain pollutants

#### University of Kaiserslautern







# **The Pilot Plants**



#### University of Kaiserslautern





## Greywater

### **Performance Greywater Plant**

summary of greywater quality and removal efficiency (Apr – Oct 2007)

| Greywater     |                    |           |          |          |          |          |          |          |
|---------------|--------------------|-----------|----------|----------|----------|----------|----------|----------|
| Parameter     |                    | Unit      | ST       | MBR      | ΟZ       | UV       | ACF      | UF       |
| COD           | Average            | mg/L      | 600      | 47.5     | 20.8     | 24.6     | < 5      | < 5      |
|               | removal efficiency | %         | -        | 92       | 97       | 96       | 99       | 99       |
| TN            | Average            | mg/L      | 12.9     | 1.4      | 1.4      | 1.4      | 1.2      | 1.2      |
|               | removal efficiency | %         | -        | 88       | 88       | 90       | 91       | 91       |
| ТР            | Average            | mg/L      | 6.9      | 2.0      | 2.0      | 1.9      | -        | 1.8      |
|               | removal efficiency | %         | -        | 68       | 68       | 68       | -        | 72       |
| E. coli       | Median             | CFU/100mL | 1.20E+05 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
|               | removal efficiency | %         | -        | 100      | 100      | 100      | 100      | 100      |
| Streptoccocus | Median             | CFU/100mL | 4.81E+04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
|               | removal efficiency | %         | -        | 100      | 100      | 100      | 100      | 100      |

ST ... Storage tank; MBR ... Membrane-Bio-Reactor; OZ ... Ozonation; UV ... UV-Disinfection; ACF ... Activated Carbon Filtration; UF ... Ultrafiltration (including ClO<sub>2</sub>)

University of Kaiserslautern





## Greywater

### **Performance Greywater Plant**

comparison of effluent to requirements for drinking water (selection)

|                                    |           | Guideline |          | KOMPLETT               |  |
|------------------------------------|-----------|-----------|----------|------------------------|--|
| Parameter                          | Unit      | EU 1998   | TVO 2001 | Apr - Oct 2007         |  |
| Conductivity                       | µS/cm     | 2,500     |          | 562                    |  |
| pH-value                           | pH-value  | 6.5       | -9.5     | 7.7                    |  |
| Boron                              | mg/L      | 1.        | .0 🦳 🧹   | < 0.03                 |  |
| Chromium, total                    | mg/L      | 0.0       | 05       | < 0.005 🚕              |  |
| Cyanide, total                     | mg/L      | 0.0       | 05       | < 0.005                |  |
| Fluoride                           | mg/L      | 1.        | .5       | < 0.1                  |  |
| Nitrate                            | mg/L      | 5         | 0        | 5.6                    |  |
| Nitrite                            | mg/L      | 0.        | .5       | < 0.02                 |  |
| Mercury                            | mg/L      | 0.0       | 01       | < <mark>0.00</mark> 05 |  |
| Selenium                           | mg/L      | 0.        | 01       | < 0.001                |  |
| Arsenic                            | mg/L      | 0.        | 01       | < 0.002                |  |
| Lead                               | mg/L      | 0.01      |          | < 0.005                |  |
| Cadmium                            | mg/L      | 0.0       | 05       | < 0.0005               |  |
| Copper                             | mg/L      | 2.        | .0       | < 0.01                 |  |
| Nickel                             | mg/L      | 0.        | 02       | < 0.005                |  |
| Postatium permanganate consumption | $mg/LO_2$ | 5.        | .0       | < 0.04                 |  |
| E.coli                             | CFU/100mL | (         | )        | 0                      |  |
| Streptoccocus                      | CFU/100mL | (         | )        | 0                      |  |
| HPC 20                             | CFU/mL    | 20        |          | 0                      |  |
| HPC 36 CFU/                        |           | 10        | 00       | 30                     |  |

TVO (2001) ... German Technical and Scientific Association for Gas and Water, German drinking water directive

EU (1998) ... European Union, Directive 98/83/EC: Council Directive of 3 November 1998 on the quality of water intended for human consumption



# **Blackwater**

### **Performance Blackwater**

summary of blackwater quality and removal efficiency (Apr – Oct 2007)

| Blackwater    |                    |           |          |          |          |          |
|---------------|--------------------|-----------|----------|----------|----------|----------|
| Parameter     |                    | Unit      | ST       | MBR      | OZ       | UV       |
| COD           | Average            | mg/L      | 720      | 136.4    | 40,0     | 24,5     |
|               | removal efficiency | %         | -        | 82       | 94       | 97       |
| TN            | Average            | mg/L      | 279,0    | 133,5    | 150,2    | 145,9    |
|               | removal efficiency | %         | -        | 52       | 48       | 50       |
| ТР            | Average            | mg/L      | 29,2     | 29,2     | 30,5     | 30,5     |
|               | removal efficiency | %         | -        | 0        | -7       | -7       |
| E. coli       | Median             | CFU/100mL | 2,20E+06 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
|               | removal efficiency | %         | -        | 100      | 100      | 100      |
| Streptoccocus | Median             | CFU/100mL | 4,14E+05 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
|               | removal efficiency | %         | -        | 100      | 100      | 100      |

ST ... Storage tank; MBR ... Membrane-Bio-Reactor; OZ ... Ozonation; UV ... UV-Disinfection

University of Kaiserslautern





# **Blackwater**

### **Performance Blackwater**

comparison of effluent to requirements for toilet flushing water (selection)

|                                                 |           | Guide        | KOMPLETT                 |                          |
|-------------------------------------------------|-----------|--------------|--------------------------|--------------------------|
| Parameter                                       | Unit      | U.S.EPA 2004 | FBR 2004                 | Apr - Oct 2007           |
| Temperature                                     | °C        | -            | -                        | 33.7                     |
| Conductivity                                    | mS/cm     | -            | -                        | 1.7                      |
| pH-value                                        | pH-value  | 6 - 9        | -                        | 4.1                      |
| Dissolved Oxygen                                | %         | -            | > 50                     | n.d.                     |
| Biological Oxidation Demand (BOD <sub>5</sub> ) | mg/L      | 10           | <b>5.0</b> <sup>1)</sup> | <b>3.7</b> <sup>2)</sup> |
| Total suspended solids                          | mg/L      | 5.0          | -                        | n.d.                     |
| E.coli                                          | CFU/100mL | 0            | 1,000                    | 0                        |
| Ps. aeruginosa                                  | CFU/100mL | -            | 100                      | 2                        |

U.S. EPA (2004) ... U.S. Environmental Protection Agency, Guidelines for Water Reuse USEPA/625/R-04/108 FBR (2005) ... German association of professionals for service and rainwater utilization, Guideline H 201

**University of Kaiserslautern** 







- process scheme produces high effluent qualities for separated grey- and blackwater and provides a safe and alternative source of water supply
- greywater effluent quality meets highest requirements for utilization, e.g. drinking water standards of EU
- blackwater effluent quality corresponds to international reuse standards for toilet flushing
  - nitrogen removal is limited in the biological process
  - blackwater contains a high fraction of inert COD







- integration of the Komplett-System as a Demonstration plant in Oberhausen
  - enrichment of micro-pollutants and reverse accumulation
  - users acceptance
  - ...
- start of demonstration phase: 01|2007









# thank you for your attention!

# www.kovPLETT-projekt.de

#### University of Kaiserslautern

