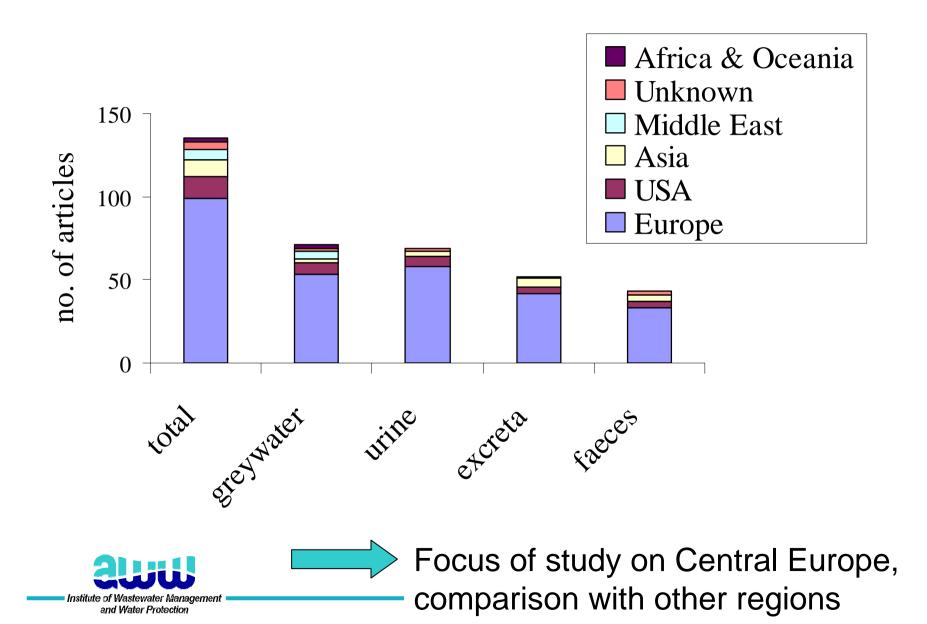
Characteristics of source-separated household wastewater flows – a statistical assessment

Franziska Meinzinger
Institute of Wastewater Management and Water Protection
Hamburg University of Technology (TUHH), Germany

Martin Oldenburg
Otterwasser GmbH, Lübeck, Germany

Aim of the study

- Increasing number of projects and concepts using source-separated wastewater flows
- Knowledge about components of different flows important for
 - » Design of (treatment) facilities
 - » Assessment of recovery potential
- Design values for Swedish conditions available, DWA task group in Germany established


Approach of the study

- Collection of secondary information
 - » Scientific publications
 - » Project reports
 - » Personal communication
- Setting up of database based on >135 sources
- Organic matter, nutrients and heavy metals in urine, faeces and greywater (domestic wastewater)
- Analysis of loads (per person and day) and concentrations
- Statistical tests

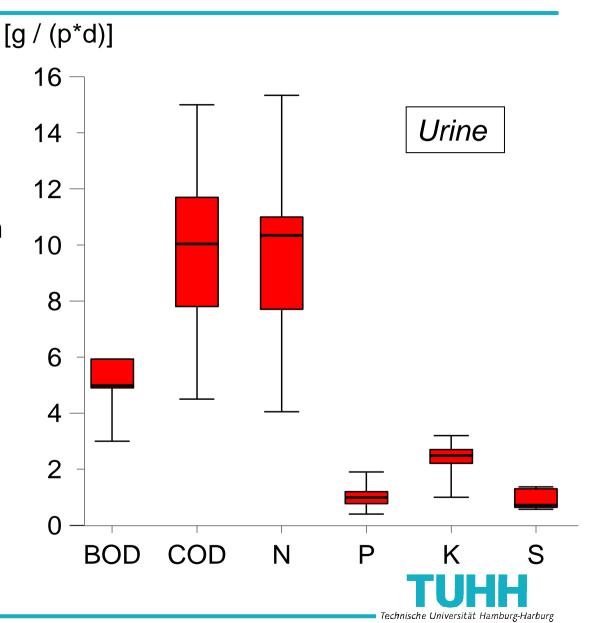
Origin of data

Challenges

- Dependence on quality of original studies
- Varying number of samples in references
- Disparities in analysis methods
- 100%-separation cannot be guaranteed due to, e.g.
 - » Time away from the home
 - » Insufficient separation effectiveness of toilet facilities
- Terms and definitions of wastewater flows vary

Definitions

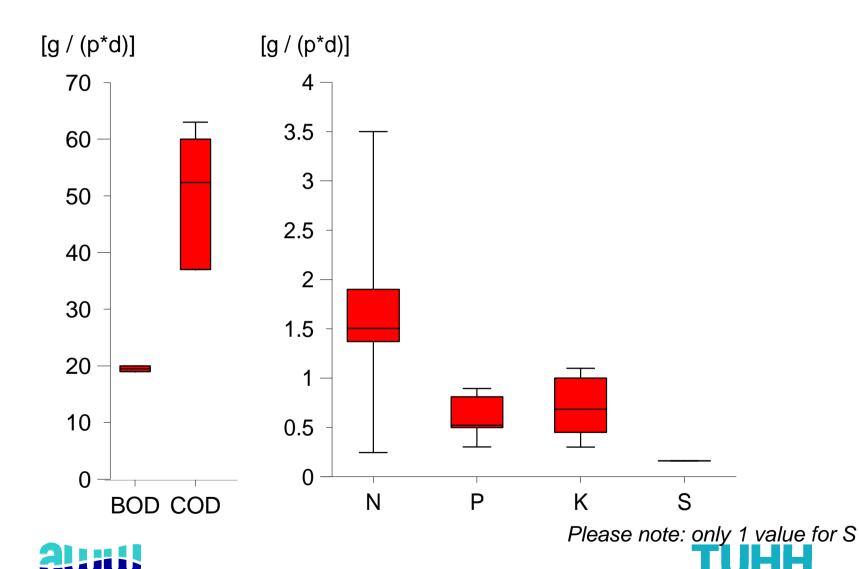
Toilet wastewater	without	Urine	Faeces			
	water	Excreta				
	with flushwater	Yellowwater	Brownwater			
		Blackwater				
Domestic wastewater without toilet wastewater		Greywater (more sub-divisions for greywater are possible)				

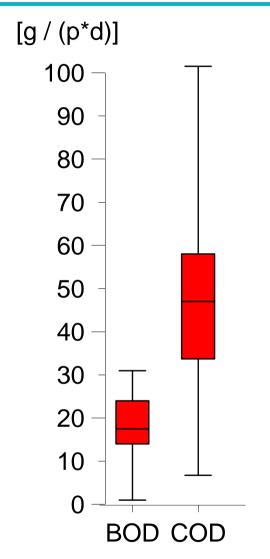


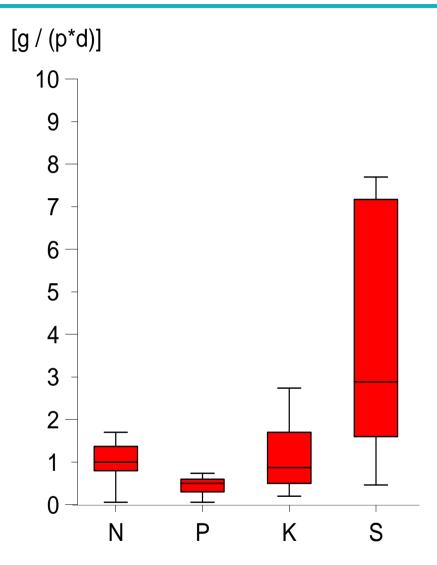
Results - Characteristics of urine

Fraction with largest amount of nitrogen and other nutrients

Relatively wide range of values, but median and upper/lower quartiles can be used as approximations

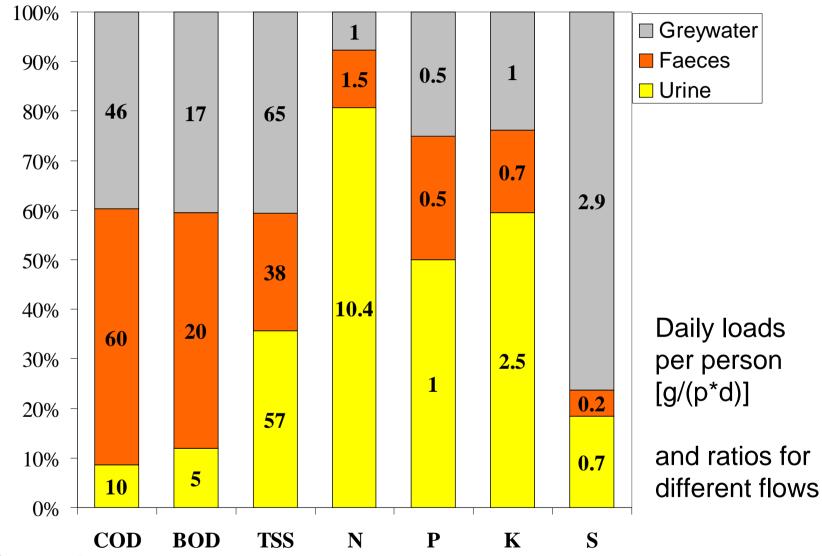

Factors that can impact on results: diet, time and place of sampling (storage) etc., but no correlation assessable


Characteristics of faeces


Technische Universität Hamburg-Harburg

Institute of Wastewater Management and Water Protection

Characteristics of greywater



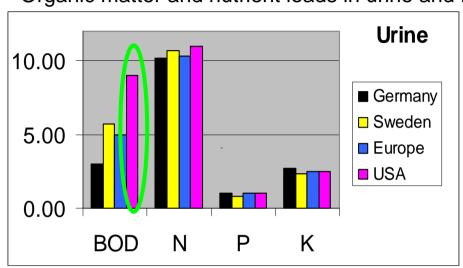
Results - Characteristics of the different flows

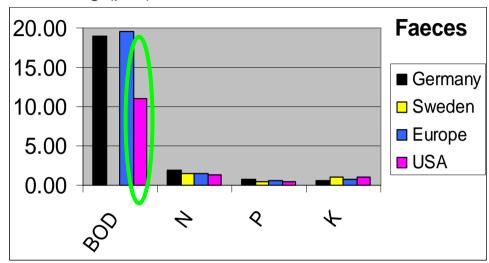
Results - Heavy metals in source-separated flows

mg/(p*d)	Pb	Cd	Cu	Cr	Hg	Ni	Zn
Urine	0.02	0.01	0.10	0.01	0.01	0.01	0.30
Faeces	0.02	0.01	1.10	0.02	0.02	0.07	10.7
Greywater	3.00	0.08	6.50	2.01	0.02	1.60	23.3

Data quality for faeces rather poor, for greywater fair and for urine good

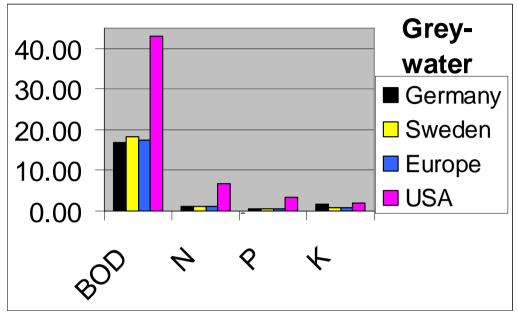
Comparison of urine application with limit values of sewage sludge directive (assuming 170 kg N/ha*y)

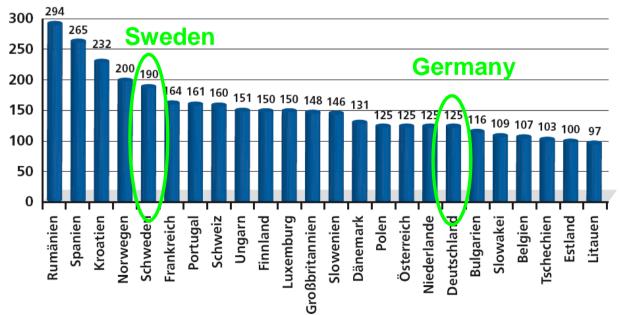

kg/ha*y	Pb	Cd	Cu	Cr	Hg	Ni	Zn
Urine	0.3e-3	2.4e-3	1.6e-3	2.4e-3	2.4e-3	2.4e-3	4.8e-3
Limit value	15	0.15	12	1	0.1	3	30



Regional variability - excreta

Organic matter and nutrient loads in urine and faeces in g/(p*d)


- Similar nutrient loads with slight differences across the countries
- Large discrepancy between BOD loads in USA and in Europe



Regional variability - greywater

- Water consumption in Sweden a lot higher than in Germany, daily nutrient loads in greywater similar
- Effect of kitchen waste grinders in USA -> higher BOD and nutrient loads in greywater

Organic matter and nutrient loads in greywater [g/(p*d)]

Water consumption in Europe [l/(p*d)] (Source: OFWAT, 2007)

	unit	Urin		Faeces		Greywater		Total		
Study		G	S	G	S	G	S	G	S	A131
Volume	1/(p•d)	1.37	1.5	0.14	0.14	110	100	-	-	-
TS	g/(p•d)	57	58	38	30	65	55	160	143	70
BOD ₅	g/(p•d)	5	-	20 ^b	-	17	26	42 ^b	-	60
N	g/(p•d)	10.4	11.0	1.5	1.5	1	1.4	12.9	13.8	11°
P	g/(p•d)	1.0	1.0	0.5	0.5	0.5	0.5	2.0	2.0	1.8

^a G: presented study, S: Swedish design values (Vinneras et al., 2006), standard values for German mixed wastewater (ATV-DVWK A 131) (ATV-DVWK, 2000)

^c Value as TKN

^b without toilet paper

Conclusion

- Database with wide range of design values available
 -> will be further updated
- Current evaluation can be used for establishing standard values for treatment (design guidelines) and nutrient/energy recovery
- Site-specific and regional variations possible:
 - » diet
 - » water use
 - » socio-economic & cultural factors
- Further extension proposed, particularly related to Non-European regions and including more differentiations

Thank you for your attention!

Contact:

Dipl.-Ing. Franziska Meinzinger
Institute for Wastewater Management and Water Protection
Hamburg University of Technology
Germany
f.meinzinger@tuhh.de
+49-(0)40-42878 2416

