Vacuum Sewerage and Greywater treatment Experience of 8 years of operation

Martin Oldenburg Andrea Albold

Infranova GmbH&Co KG Flintenbreite 4 23554 Lübeck www flintenbreite.de

www.otterwasser.de

Ralf Otterpohl

Institute for Wastewater Management and Water Protection Hamburg University of Technology (TUHH), Germany

Project's History

- Residential area in the city of Luebeck (A_{tot} = 5.4 ha)
- Private operating infrastructure company (operation of wastewater treatment system and operation of all other medias supplying the houses)
- Project started in 1999 designed for 117 units
- Interruption at 30 units in 2000
- Operation of the infrastructure systems since 8 years

Current Situation

- Infrastructure is mainly finished
- 23 terraced houses
 12 twin houses
 Central building with 4 flats
- 116 inhabitants
- All facilities for the technical operation are finished and in operation since 2000
- Ongoing: Construction of 42 terraced houses and 12 flats

Flintenbreite

Characteristics

- Buildings designed as low energy consuming houses
- Ecological materials have impact on energy and material flows during buildings life cycle
- All consumption data of the houses are known because of the installation of meters

- Infrastructure system is operated by a private company and recharged by fee calculations
- Here focus only on water and wastewater related issues.

Water consumption per unit

Water consumption per capita

Composition of greywater

			Influent		Effluent	
Parameter		Unit	Average	Range (min-max)	Average	Range (min-max)
Volume		L/(cap•d)	60	50 - 120		
Organic matter	BOD ₅	g/m³	156	136 – 194	6	1 – 14
	COD	g/m³	426	258 – 584	41	6 – 73
Nutrients	Ν	g/m³	11	8 – 17	3.6	1.2 – 5.7
	P _{tot}	g/m³	6.2	4 – 10	4.5	1.2 – 6.8
	PO ₄ -P	g/m³	5.0	3 - 8	3.9	2.8 – 5.1

Sludge from greywater

- Greywater contains sludge
- Solid removal important for biological treatment
- Colour: upper part: white – grey lower part: dark
- Sludge volume: approx. 42 l/(cap*a)
- Desludging interval:
 5 – 6 years

Composition of blackwater

Par	ameter	Unit	Average	Range (min-max)
Volume		L/(cap∙d)	6	
	COD	g/m³	10,496	3,640 - 29,230
anic tter	ТС	g/m³	3,716	1,820 – 7,821
Orga	MLSS	g/m³	9.0	3.5 – 23.9
	VSS	%	66	45 – 63
nts	N _{tot}	g/m³	1,505	1,050 - 1,920
Nutrie	NH ₄ -N	g/m³	1,081	790 - 1,510
	P _{tot}	g/m³	202	98 - 377

Elements of vacuum system

Vacuum toilet

Vacuum pipe (Ø 40 - 50 mm)

Temporary Buffer storage (8 L)

Vacuum pipe (Ø 50 – 63 mm)

Vacuum station

OtterWasser

Operation Vacuum System

Energy consumption Vacuum

Operation vacuum system

- Blockage caused by misuse mainly in the beginning of the operation
- Flush button accident-sensitive
- Clogging of air control tubes with fibres
- Temporary buffer store equipped with bypass meanwhile
- Toilet valves have higher lifetime than expected
- Pipes has to be cleaned with acid after 6 years of operation to remove blockades caused by hardness precipitation
- Monitoring of energy consumption of vacuum station can identify air leakages
- All maintenance is done by staff of the operation company not by the residents.

Lessons learned

- Temporary buffer storage is not necessary
- High ammonia concentrations can be noticed by opening of the pipe system
- Treatment of exhausted air necessary (biofilter)
- PE-pipes for vacuum pipes recommended no steel or galvanised steel pipes (cleaning may hurt inner surface and makes corrosion possible) high ammonia concentrations may cause corrosion
- Because of high water hardness regular treatment of pipes with acid is necessary (every 5 – 6 years)
- Energy consumption for vacuum: 45 kWh/(cap*a)

Conclusion

- Source separation very effective
- Most of the inhabitants recognize the benefits of the vacuum toilet-system; development of the toilets is wanted
- Experience may decrease the effort for maintenance
- Minor technical modifications of the vacuum system have been necessary
- Operation costs of integrated infrastructure system approx. 20 % lower than for conventional system

