

Sanitation concepts and knowledge gaps Key-note presentation Tove Larsen, Eawag

Eawag: Das Wasserforschungs-Institut des ETH-Bereichs

URBAN HYGIENE ('The Sanitation Challenge')

WATER POLLUTION CONTROL STORM WATER ('Mainstream')

RESOURCE RECOVERY ('Ecosan')

Main services of wastewater management

'Alternative wastewater treatment': source separation and dezentralization

Main arguments for source separation

- Resource recovery
- Water saving
- Simplifies feces management
- Efficient water pollution control

Main arguments for decentralization

- > No water for transport
- More direct water recycling
- > No capital intensive sewers
- Avoids long planning horizons

Main arguments against source separation and decentralization

- Lack of public acceptance
- Costs
- System effectiveness
- > Monitoring
- Non-existing technology

eawag aquatic research 8000

Main knowledge gaps

Toilet and Processing unit:

Technology development Mass production

Transport (1):

Optimizing *technical* solutions for transport *to* (*semi*)-*decentralized* processing unit

Transport (2):

Minimizing residuals Socio-economic models for transport from on-site application

Energy:

Process optimization Solutions for on-site applications

Recycling:

Main knowledge gaps

Toilet and Processing unit:

Technology development Mass production

Transport (1):

Optimizing *technical* solutions for transport *to* (*semi*)-*decentralized* processing unit

Transport (2): Minimizing residuals Socio-economic models for transport from on-site application

Energy:

Process optimization Solutions for on-site applications

Recycling:

Scaling: the main problem of transporting raw urine

eawag aquatic research 8000

Main knowledge gaps

Toilet and Processing unit:

Technology development Mass production

Transport (1):

Optimizing *technical* solutions for transport *to* (*semi*)-*decentralized* processing unit

Transport (2):

Minimizing residuals Socio-economic models for transport from on-site application

Energy

Process optimization Solutions for on-site applications

Recycling:

Recycling / Transport Maximum energy available

Transport: How much is much?

	Recycling of numerics norm unne treatment								
Struvite for P-recycling (~4) Adsorption of N on Zeolithes (~26)	Evaporation, NH ₄ ⁺ / H ₂ SO ₄ (~95) Struvite for N-recycling (~118)	Evaporation, urea / H ₂ SO ₄ (~5% ~200g) NH ₃ stripping, H ₂ O / 5 bar (~10 % ~250g)	Reverse osmosis (~20 % ~ 360 g) Freeze-thaw (~25 %)	Electrodialysis (~35 %)	Adsorption of N on Zeolithes (>600 g)	Stabilization (acid_biological_storage)			
0	120 <mark>0</mark>	0.15	0.30	0.45	0.60	1.5			
Weight (g)		Vol	ume (Lite	ers)					

eawag aquatic research 8000

Pocycling of nutrients from uring treatment

Comparison: amounts of urine and feces

Novaquatis (Nova 8) Profiting from local knowledge

Photo: Edi Medilanski (Eawag)

eawag aquatic research 8000

Main knowledge gaps

Toilet and Processing unit:

Technology development Mass production

Transport (1):

Optimizing *technical* solutions for transport *to* (*semi*)-*decentralized* processing unit

Transport (2):

Minimizing residuals Socio-economic models for transport from on-site application

Energy:

Process optimization Solutions for on-site applications

Recycling:

The hygiene aspect of recycling

What do we know?

- For feces, storage and biological processes work to some extent
- Urine is less of a problem; 6 months storage works (Caroline Höglund)

Main questions:

- Which are the relevant indicator organisms for feces and/or urine?
- Are they always the same, or do they depend on the setting?
- In which direction is research going? New methods?
- How far are we from standards, supported by cheap and efficient monitoring?

Feces market in China (Photo: Edi Medilanski, Eawag)

Are micropollutants a recycling problem?

eawag aquatic research 6000

Hammer and Clemens (2007) Water Science and Technology 56(5): 201-209

Fluxes per hectare and year using the optimum fertilizer dosage of pig and cattle slurry as well as human urine a) Antibiotics (Figure 3); b) Steroids (Figure 4)

Average excretion of 212 pharmaceuticals

Lienert et al. (2007) Water Science and Technology 56(5): 87-96

On average ...

research Oooo

- ... the larger fraction of each active ingredient is excreted via urine
- ... ca. 42% of each active ingredient is metabolized
- ... metabolites are mainly excreted via urine

But data inconsistency and extreme variability from 0 - 100%

	64% tota urine (± 2	al via 27%)	f	35% total via eces (± 26%	3 5)	
35% uncl urine (±	nanged 33%)	42% m urine	netabolized e (± 28%)	32% ur feces	ichanged (± 34%)	
)/ (00%	40%	6.0%	<u> </u>	100%	

Removal of micropollutants in treatment plants: Ozonation or activated carbon

Ozonation

- Rather effective, but little information on transformation products
- Energy demand: 0.1–0.3 kWh/m3 (comparable to the present demand of WWTPs)
- Costs: 0.05–0.15 €/m3 (present WWTP: 0.5-2.5 €/m3)

Activated carbon

- Broad removal and total elimination of micropollutants during carbon regeneration
- CO₂ emissions:
 comparable to the present system
- Costs: 0.08–0.20 €/m³
 (present: 0.5-2.5 €/m³)

Background-COD and concentration: Important parameters for removal of micropollutants

Background COD

Wastewater influent (100%)

Wastewater effluent (10%)

Urine (5%)

Biologically treated urine (1%)

Typical European wastewater production

Combined wastewater (100 m³/p/year)

Toilet (25 m³/p/year)

Urine (0.6 m³/p/year)

Final report of the transdisciplinary Eawag project Novaquatis