Decentralised treatment of high strength sewage in UASB and Anaerobic-Hybrid septic tanks

Nidal Mahmoud

Institute of Environmental and Water Studies (IEWS) Birzeit University (BZU)

> An International Conference on The Sanitation Challenge New Sanitation Concepts and Models of Governance Wageningen, May 19-21, 2008

On-site sanitation !

→ Wastewater reuse

close to the

point of origin

Treatment of different wastewater streams

water consumption

Reduce < energy use</p>

investment costs

Publicly manageable (scale)

Comply with sparse population

On-site sanitation in Palestine !?

• Cesspits and septic tanks are the primary modes of on-site wastewater disposal and sewage pre-treatment.

sustainable

Low-cost

plain

effective

• A sanitation intervention is needed.

Adequate option

The UASB-septic tank system represents an effective and low-cost onsite pre-treatment alternative for domestic wastewater (Bogte *et al.*, 1993; Lettinga *et al.*, 1993).

The performance of the UASB-septic tank has been recently investigated under Palestine conditions (Al-Shayah and Mahmoud, 2008; Al-Jamal and Mahmoud, 2008).

COD: hot period results					
Doromotor	UASB-septic tank 1 (R1)		UASB-septic tank 2 (R2)		
I al ameter	(HRT =	2 days)	(HRT = 4 days)		
COD	Effluent	Removal (%)	Effluent	$\mathbf{Pomoval}(0)$	
	(mg/L)		(mg/L)	Kelliovai (%)	
Total	537 (60)	54 (6)*	493 (95)	58 (7)*	
Suspended	97 (43)	85 (6)*	69 (29)	89 (4)*	
Colloidal	129 (30)	27 (19)	121 (31)	32 (17)	
Dissolved	311 (64)	12 (20)	304 (80)	14 (25)	
COD: cold period results *: Significant difference ($\rho < 0.05$)					
COD: cold	period resu	i <mark>lts</mark>	Significant differ	rence ($\rho < 0.05$)	
COD: cold	period resu UASB-septic	tank 1 (R1)	Significant differ	rence ($\rho < 0.05$) tank 2 (R2)	
COD: cold Parameter	period resu UASB-septic (HRT =	*: tank 1 (R1) 2 days)	Significant differ UASB-septic (HRT =	rence (ρ < 0.05) tank 2 (R2) 4 days)	
COD: cold Parameter	period resu UASB-septic (HRT = Effluent	*: tank 1 (R1) 2 days)	Significant differ UASB-septic (HRT = Effluent	rence ($\rho < 0.05$) tank 2 (R2) 4 days)	
COD: cold Parameter COD	period resu UASB-septic (HRT = Effluent (mg/L)	*: tank 1 (R1) 2 days) Removal (%)	Significant differ UASB-septic (HRT = Effluent (mg/L)	tank 2 (R2) 4 days) Removal (%)	
COD: cold Parameter COD Total	period resu UASB-septic (HRT = Effluent (mg/L) 433 (109)	*: tank 1 (R1) 2 days) Removal (%) 51 (9)	Significant differ UASB-septic (HRT = Effluent (mg/L) 408 (109)	rence (ρ < 0.05) tank 2 (R2) 4 days) Removal (%) 54 (11)	
COD: cold Parameter COD Total Suspended	period resu UASB-septic (HRT = Effluent (mg/L) 433 (109) 62 (34)	*: tank 1 (R1) 2 days) Removal (%) 51 (9) 83 (10)*	Significant differ UASB-septic (HRT = Effluent (mg/L) 408 (109) 45 (30)	rence (ρ < 0.05) tank 2 (R2) 4 days) Removal (%) 54 (11) 87 (8)*	
COD: cold Parameter COD Total Suspended Colloidal	period resu UASB-septic (HRT = Effluent (mg/L) 433 (109) 62 (34) 104 (46)	*: tank 1 (R1) 2 days) Removal (%) 51 (9) 83 (10)* 20 (32)	Significant differ UASB-septic (HRT = Effluent (mg/L) 408 (109) 45 (30) 112 (41)	rence (ρ < 0.05) tank 2 (R2) 4 days) Removal (%) 54 (11) 87 (8)* 10 (37)	

Problem

The achieved values of VFA and CODdis, in the system operated by Al-Shayah and Mahmoud, of 160 and 304 mgCOD/l; and the effluent biodegradable COD of 225 and 192 mg COD/l indicate that the reactor can achieve further treatment.

Hypothesis

- The reactor performance might be improved by:
- enhancement of sludge bed methanogenic activity by for instance inoculating the reactor with well adopted sludge might further
- provision of packing material in the upper part of the reactor

Objectives

To promote a viable and affordable on-site sanitation alternative for rural communities.

Specific objectives

The main goal of this research is to asses the possibility of enhancing the process performance of the UASB-septic tank treating sewage under Palestinian conditions by (1) adding a packing media to the top of the reactor, thus converting the UASB-septic tank to an anaerobic hybridseptic tank; and (2) by inoculating the reactors with sludge of good quality, viz. well adopted sludge.

Influent and effluent CODtot and removal efficiencies (%) in a UASB-septic tank and an AH-septic tank reactors

		Cold period 15 – 108 day		H	Hot period 108 – 227 day		
and a start of the				+			
		the second	n = 22		-	n = 13	1 ALAN
I STATE OF		Influent	UASB-ST	AH-ST	Influent	UASB-ST	AH-ST
CODtot (mg/l)	Average	1042	520	539	1141	385	509
COD removal (%)	Average	1	50	48	1	66	55
Tair (°C)	Average	16		and the second	27	21	

Influent and effluent conc. and removal (%) in UASB-st and AH-st

VS, TS, and VS/TS ratios (0-227 days)

- I - I	VS	TS	VS/TS
UASB-st	47	68	67
AH-st	37	55	68

The VFA/CODdis had remarkably reduced from 40% in the influent to 12% in the effluent of both reactors, with a substantial decrease of VFA concentration in the effluent.

Conversion in UASB -septic tanks: 2 days HRT

Parameter	This research	Al-Shayah and Mahmoud (2008)	
H (%)	29	16	A TOWN
A (%)	30	19	14
M (%)	36	15	

Conclusions

The performance of the UASB-septic tank reactor was substantially improved by starting up the reactor with well adopted anaerobic sludge.

The UASB-septic tank reactor is more efficient as compared to the AH-septic tank reactor.

Recommendations

Application of UASB-septic tank for grey water treatment should be assessed.

Application of decentralized "community onsite and/or one house or cluster on-site" in Palestine is recommended

Performance of the reactors during the second year of operation should be assessed.

A post-treatment step is recommended in most cases after UASB- septic tank systems.

Hydrodynamic behavior of the UASB septic tank should be assessed

