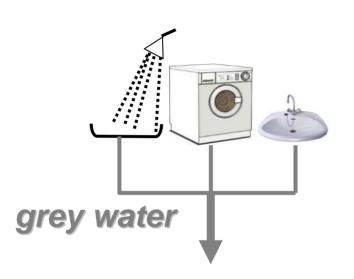
Greywater Reuse: Concept, Benefits, Risks and Treatment Technologies

Holger Gulyas

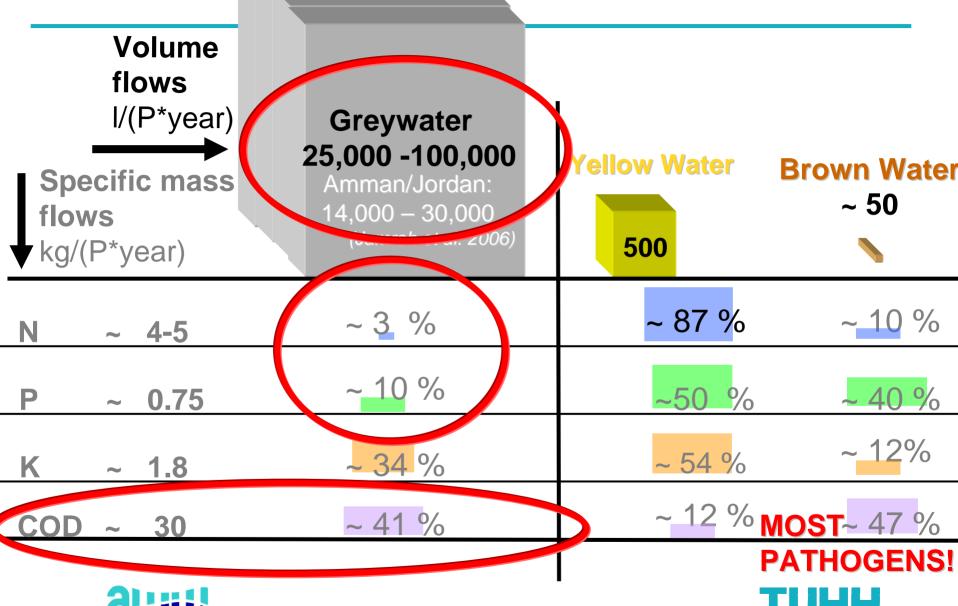

Institute of Wastewater Management and Water Protection
Hamburg University of Technology

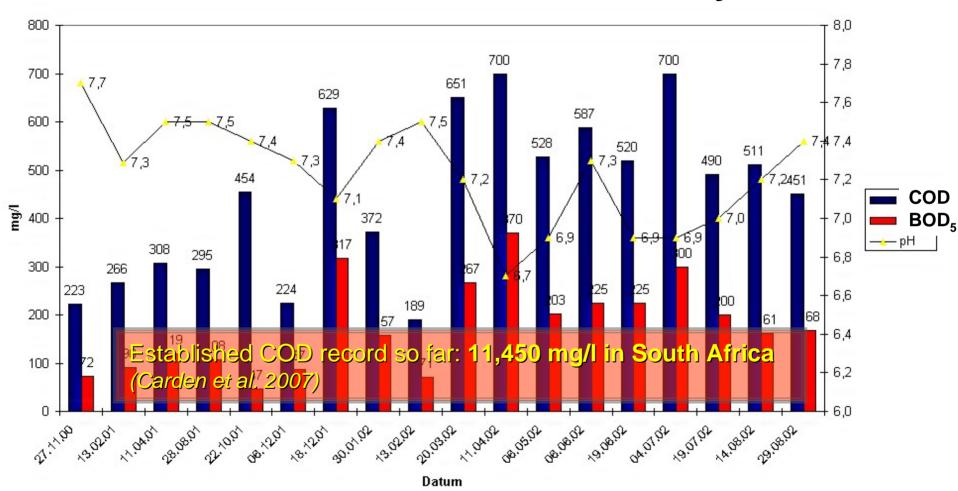
What is greywater?

Greywater is that part of domestic wastewater which is not passing toilets:

i.e. originating from bath tubs showers hand-wash basins washing machines automatic dish washers kitchen sinks floor drains

Slightly different definition in Australia:


Sustainable Earth Technologies: "Some people also categorise kitchen wastewater as blackwater because it has quite a high organic loading relative to other sources of wastewater such as bathwater."



The Three "Streams" of Domestic Wastewater

and Water Protection

Raw greywater of the eco-settlement Luebeck-Flintenbreite, Germany

 $BOD_5 = 47 \text{ to } 370 \text{ mg/l}$ COD = 189 to 700 mg/l

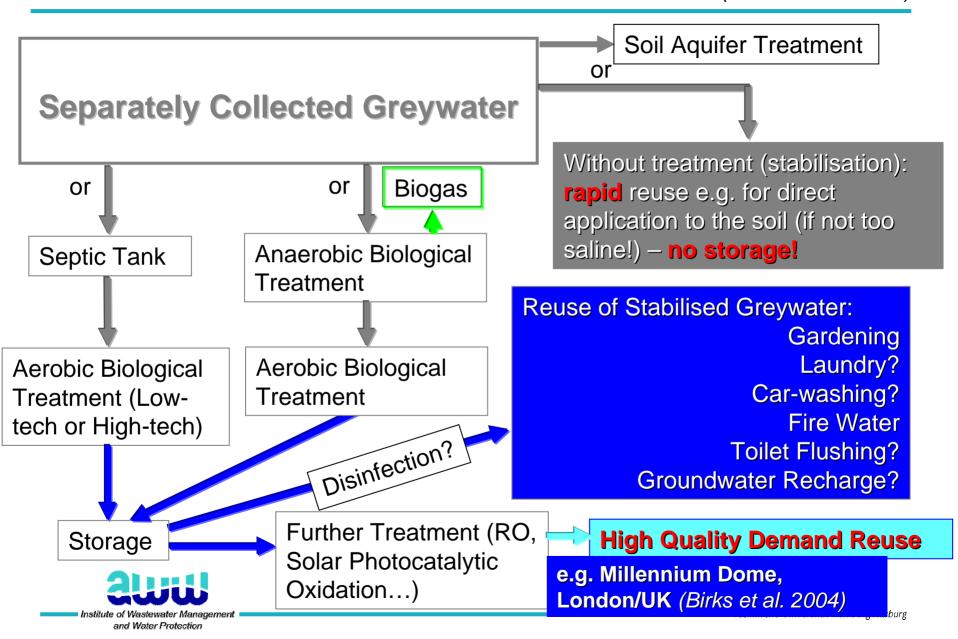
Concepts

Separate Collection of Greywater

(high volume, low N & P concns., lower fecal pathogen contamination than entire raw domestic wastewater)

requires dual wastewater plumbing in homes!

Treatment (or not?)


Reuse (saving fresh water)

Concepts

On-site disposal no problem with < 500 l/(ha·d) (Carden et al. 2007)

Potential Benefits of Greywater

Quantity:

Usually largest fraction of domestic wastewater

Quality:

Lowest N and P nutrient load among the particular domestic wastewater streams, low microbiological load, safe segregation of industrial wastewater.

High Reuse Potential:

⇒ If collected separately: Good source for reuse (after proper treatment) reducing fresh water demand

Study in southern Brazil: Potable water saving of 25 to 35 % by greywater use for toilet flushing, laundry and cleaning (Ghisi & de Oliveira 2007, Ghisi & Ferreira 2007)

Potential Benefits of Greywater

Reduced tap water demand offers a lot of secondary benefits:

- reducing water bills for individuals
- reducing competition of big cities with surrounding farmers for scarce water sources
- reducing tapped water demand reduces the release of the ozone-depleting gas chlorine (unless more chlorine is utilised for disinfection of reclaimed greywater)
- If greywater is an additional water source leading to increased supply of irrigation water, this can stimulate an increase in agricultural and forestal production.
- More trees and plants have benefits:
- They absorb carbon dioxide helping to mitigate global warming;
- trees provide shade and protection from the sun (reduction of skin cancer);
- trees increase evaporation and thus condensation of the evaporated moisture as clouds and finally lead to a greater chance of precipitation;
- leaves from the trees create soil organic matter;
- roots of trees increase permeability retaining water from storms and preventing runoff thus reducing soil erosion and increasing ground water recharge;
- plants generally enhance the asthetic value of an area.

- **Dual plumbing** (for separate greywater collection) in large houses (mansions) may be costly.
- Because of *high BOD concentrations*, microorganisms can grow in untreated greywater during storage

("Gastro-intestinal illness can be transmitted through improper use" [Canterbury City Council])

However: "Despite all sorts of grievous misuse ..., there has not been a single documented case of grey water transmitted illness in the US." [oasis design]

Droplets from greywater sprinklers can evaporate to leave harmful microorganisms in the air.

- Risk from *viruses* contained in greywater is the most prominent in a greywater reuse system without disinfection [Ottosson & Stenstroem 2003]
- (high excretion, environmental persistence, low infectious doses of viruses).
- Acid-loving plants tend to have a hard time with greywater (because of eventually slightly alkaline pH and reasonable alkalinity).
- Greywater is reasonably *saline* (depending on household chemicals applied): limitedly useful for crop irrigation (especially in irrigation systems with high evaporation rates).

[oasis design]

http://www.oasisdesign.net/greywater/misinfo/

Grey water "main" running down a Tijuana street — a bona fide health threat. In theory, this water could produce fruit and green relief in a sanitary way.

Unfortunately, extremely high salt concentration from hand washing with small amounts of hand-carried water and generous amounts of "Fab one-Shot" from little day-glo packets renders this resource unusable;

even though it is year-round water in a desert, not even weeds grow from it.

A enlightened soap factory with a line of biocompatible cleaners and a suitable marketing plan could dramatically transform the colonia environment, exchanging fetid, mucky streets for thriving, shade, and fruit-providing large trees.

- Gross et al. (2005) found accumulation of salts in plots irrigated with raw greywater not more pronounced than in plots irrigated with fertilized freshwater.
- Detergents with high **boron** concentrations exert negative effects on soil properties when greywater is used for irrigation (*Gross et al. 2005*) boron is phytotoxic!

(another reason for selecting detergents properly)

 Soils irrigated with raw greywater might become more hydrophobic due to surfactants –

(hydrophobic soils are not suitable for healthy plant growth) (Gross et al. 2005)

• Therefore: raw greywater is not suitable for unlimited irrigation (Gross et al. 2005).

- Groundwater/drinking water pollution if soakaways or greywater drain fields are close to shallow groundwater tables and/or close to wells
- Clogging of U shaped tubes, perforations in irrigation tubes with suspended solids (unless removed by septic tank or sand filter) –
- drip irrigation with non-stabilised greywater only works for a few weeks; then perforations are clogged due to microorganism growth.
- Trace organics are contained in greywater even subsequent to biological treatment.
- However, recalcitrant chemicals are also found in surface waters and even in the atmosphere (some are associated with airborne dust particles).
- Treatment train fast filtration/chlorination bears the risk of trihalomethane formation (carcinogenic)!
- Storage of untreated greywater leads to odours due to reasonable BOD.
- Aesthetic problem (e.g. when using treated greywater for toilet flushing): Biological treatment of greywater generates humic substances and leads to appearance of a slightly yellowish colour of the treated greywater.

Treatment Technologies RBC economically more feasible than MBR (Friedler & Hadari 2006)

Biological treatment

Anaerobic pre-treatment (bio-gas?)

Aerobic processes (MBR) SBR, (RBC) BAF, constructed wetlands, ponds...)

[Slow sand filtration (1.2 – 1.5 m) is able to reduce adenovirus and coliphages by 99 – 99.9 %, but norovirus only by 91 % (Bauer, 2007)]

"Polishing" of biologically pre-treated greywater:

Reverse osmosis

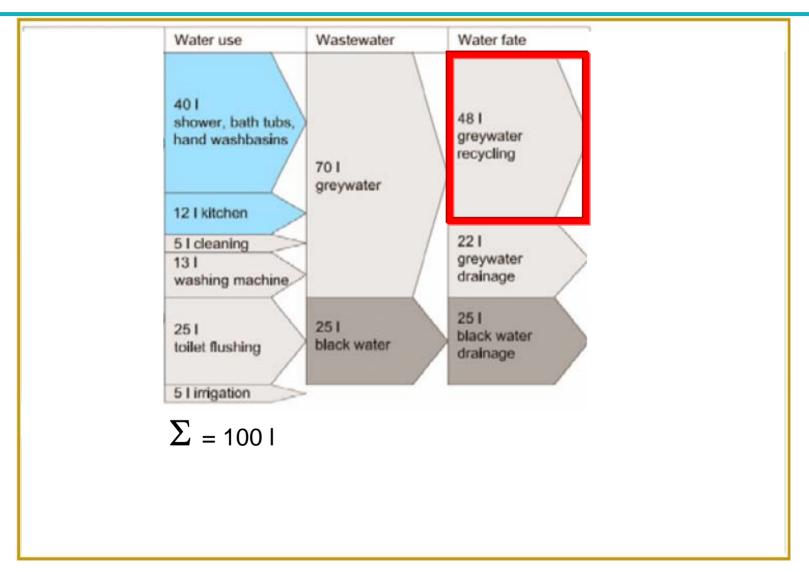
Distillation (also solar options like solar stills)

Removal of trace organics with "advanced oxidation processes", AOPs (e.g. solar photocatalytic oxidation – kills also microorganisms)

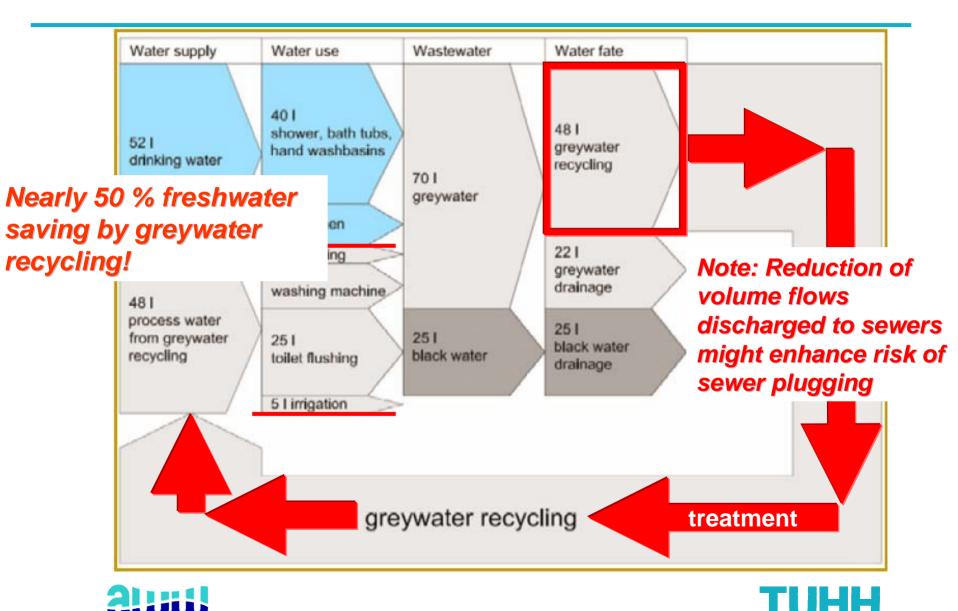
Disinfection: Chlorination (if drinking water quality is required)

UV disinfection

AOPs


Less recommended technologies:

separation processes not able to stabilise greywater (e.g. fast filtration) with subsequent chlorination (AOX formation!)


Possible greywater reuse scheme (suggested by "DecRen Water Consult"):

Possible greywater reuse scheme (suggested by "DecRen Water Consult"):

and Water Protection

Technische Universität Hamburg-Harburg

