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ABSTRACT: Water and sanitation (wastewater) infrastructure in
the United States is aging and deteriorating, with massive
underinvestment over the past several decades. For many years,
lack of attention to water and sanitation infrastructure has
combined with racial segregation and discrimination to produce
uneven access to water and wastewater services resulting in
growing threats to human and environmental health. In many
metropolitan areas in the U.S., those that often suffer
disproportionately are residents of low-income, minority commun-
ities located in urban disadvantaged unincorporated areas on the
margins of major cities. Through the process of underbounding
(the selective expansion of city boundaries to exclude certain neighborhoods often based on racial demographics or economics),
residents of these communities are disallowed municipal citizenship and live without piped water, sewage lines, and adequate
drainage or flood control. This Perspective identifies the range of water and sanitation challenges faced by residents in these
communities. We argue that future investment in water and sanitation should prioritize these communities and that interventions
need to be culturally context sensitive. As such, approaches to address these problems must not only be technical but also social and
give attention to the unique geographic and political setting of local infrastructures.
KEYWORDS: water and sanitation infrastructure, disadvantaged unincorporated communities, environmental justice,
participatory process, sociotechnical design, sustainable solutions

■ INTRODUCTION
While water and sewer services have been lauded as one of the
greatest public health accomplishments in modern U.S.
history,1 communities across the country continue to fight
for access. Meehan et al.2 identify an estimated 471 000
households (1.1 million individuals) lacking a piped water
connection, 73% of which are located in urban areas close to a
networked supply. One of the most vulnerable segments of this
population that suffers chronic water and sanitation insecurity
(recognized broadly as access that is unreliable, inadequate, or
unaffordable3) are residents of urban disadvantaged unin-
corporated (i.e., not governed by its own municipal
corporation but by a county or township) communities.4,5

These are typically low-income, minority neighborhoods with
high residential density located on the edge of city limits,
where decades of municipal underbounding have led to wide-
scale disinvestment in public infrastructure.6,7

Underbounding is a form of gerrymandering through city-
county annexation covenants that excludes certain commun-
ities�often African-American, Hispanic, and Native Ameri-
can�from the benefits of municipal citizenship, including
access to clean water and adequate sanitation.8,9 This practice

has also resulted in greater exposure to unwanted development
and land use, which concentrate environmental pollutants and
contaminants in these communities (e.g., brownfields, poor air
quality, contaminated groundwater), raising residents’ health
risks and lowering property values.10,11 Underbounding also
exposes many residents of these communities to unsafe
drinking water and inadequate sanitation infrastructure and
prevents access to meaningful participation in planning and
decision making.12 Notably, underbounded communities have
unique challenges compared to other disadvantaged minority
communities in urban areas because they often lack the same
type or level of infrastructure regulation and political
representation.13

With the recent passing of an historic bipartisan infra-
structure deal, the U.S. Congress is poised to make “the largest
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investment in clean drinking water and wastewater infra-
structure in American history.”14 This effort, combined with
the White House’s Justice40 proposal that would direct 40% of
the benefits of federal investments toward addressing the
climate crisis to communities with environmental justice
challenges, will likely make available vast new resources to
address chronic water and wastewater infrastructure problems.
Yet, for underbounded communities, solutions to these
challenges cannot be merely technical (e.g., provide access to
centralized systems) but must also be sensitive to cultural
context. We contend that solutions must emphasize holistic
and participatory approaches that give attention to both social
dynamics and systems dynamics, as well as ensuring
equitability by codesigning solutions with community
residents. In this commentary, we outline some of the key
water and sanitation challenges in underbounded communities
and identify three priorities for new investments aimed at
tackling these problems.

■ CHALLENGES
Disadvantaged unincorporated communities are pervasive
throughout the world. In the United States, these include
(but are not limited to) colonias inhabited by Latino/a/x
residents in the Southwest and especially along the U.S.−
Mexico border,15,16 Black and African-American neighbor-
hoods in the Southeast and Midwest,5,17 and many Native
American communities throughout the country.18,19 While
these groups share similar water and sanitation challenges,20

those that are underbounded in urban areas have unique
characteristics.21 In addition to their metropolitan setting,
underbounded communities are often predominantly inhabited
by people from minoritized races and ethnicities, have high
residential densities, large proportions of renters, aging housing
stock, and lack critical infrastructure due to their unincorpo-
rated setting.22 Moreover, as Anderson4 has pointed out,
underbounded communities rely on only one tier of local
government�the county�while disadvantaged urban neigh-
borhoods within municipalities have access to both city and
county resources. As such, compared to their municipal
counterparts, underbounded communities have less oppor-
tunity for economic growth because of their alienation from
services, such as water and sewer, even though they are often
relatively close to connections to these systems.

Water. The distinctive socioeconomic and historical
characteristics of underbounded communities have led to a
wide range of water and sanitation challenges. For example,
many residents of these communities have no choice but to
rely on water contaminated by industrial wastes that pose a
health threat or is undrinkable due to discoloration or foul
odors. Since the 1970s, property values and corporate taxes
have generally increased in inner cities, making unincorporated
urban areas attractive for industries producing hazardous
wastes.10 Environmental contaminants (e.g., arsenic, lead,
nitrate, pesticides) from these industries, as well as from
nonindustrial sources, for instance, agriculture or residential
landscaping, make their way into groundwater, contaminating
private drinking wells these communities depend on.22−27

Compounding this problem, drinking wells in unincorporated
areas are usually not regulated after initial construction,28,29

and property owners are often unaware of the dangers and the
need to regularly test their water,30 or if aware, are unable to
afford it.31 In some communities, this is a problem for
medium-scale, community-wide systems, such as those that

service low-income housing complexes, since residents often
have limited information about their water systems.2 Two
studies of underbounded communities in North Carolina, for
instance, report that well water users often determine water
quality through taste and smell rather than laboratory testing
because they cannot afford it and are unable to detect colorless
and odorless contaminants.32,33 Users also reported being
unaware of where to get testing equipment, uncertain about
how to use it, and concerned about time and cost associated
with testing. Moreover, where low-cost testing services are
available, such as through local health departments in some
states, people are often unaware of the service.

Sanitation. Similar to their rural counterparts, residents of
underbounded communities often rely on on-site wastewater
treatment, such as septic systems,34 which typically consist of a
septic tank that delivers primary treatment followed by a drain
field that provides additional attenuation and treatment via
discharge to the vadose zone. Because properties in these
communities are typically very small, drain fields are often not
sized properly for the intended use of the system. In some
communities, soil conditions can also be inadequate for the
design of conventional drain fields.35 Research also shows that
underbounded communities often experience fluctuations in
the numbers of people residing in individual homes such that,
at times, higher residential density can overwhelm the capacity
of the septic system, leading to failure.36 Small lot size can also
lead to well water contamination when the well and drain field
are too close.37 In a study of 20 domestic wells in communities
served by septic systems, researchers found evidence of
elevated wastewater compounds, including nitrate and PFAS
(per-and polyfluoroalkyl substances).38 New research demon-
strates that the presence of human-associated viral and
bacterial fecal indicators, as well as pharmaceuticals, personal
care products (e.g., prescription drugs, stimulants, and
cosmetics), and other contaminants of emerging concern, are
detected in private wells and released into the environment
through on-site wastewater treatment systems, which were not
designed to handle these types of emerging contaminants.39−41

While on-site wastewater treatment systems serve almost 20%
of U.S. households,42 there is much less research or oversight
focused on the occurrence, fate, and improved treatability of
emerging organic chemicals in such systems compared with
more mechanized and centralized facilities.43 Finally, drain
fields can also be inundated by stormwater, as some
underbounded communities, especially in the Southeast, are
located in active flood zones.44 In these settings, stormwater
can mobilize contaminants, such as heavy metals and PFAS
from brownfields or oil and pesticides from roads and parking
lots into surface- and groundwater sources.45 Stormwater may
also introduce wastewater to water sources through cross
connections, overflows, and leakage from broken and aged
sewers.46,47 Following a sustained flooding event in Louisiana,
for instance, researchers measured bacteria in private wells,
detecting gene markers of Legionella spp., L. pneumophila, and
Naegleria fowleri in 40 homes.48

Inadequacies in Existing Solutions. One solution to
some of these challenges that is often proposed is to connect
residences in underbounded communities to small centralized
systems. However, there are a range of socioeconomic
challenges with this approach, including problems with
sustainability of small systems in terms of operation and
maintenance costs, lack of professional staff and certified
operators, funding challenges for upgrades driven by increased
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regulatory requirements, incentivizing property owners to
connect, and affordability of the service by households.6,49−51

In short, simply creating separate infrastructure to serve
underbounded communities may just add additional challenges
to already under-resourced communities. More research is
needed on these challenges to better understand barriers to
adoption and the capital and recurring cost structures needed
to incentivize property owners and to make the connection
and service affordable over the long-term.52,53 Research on an
underbounded community in North Carolina, for example,
revealed how financial cost plays a significant role in how
residents perceive their choices concerning municipal water
supply.6 In another study (in California), research identified
federal funding resources as instrumental in facilitating the
process for residents of underbounded communities.54

In some cases, underbounded communities are partially or
fully serviced by existing centralized systems or have potential
access to those systems, as interlocal agreements between
municipalities and unincorporated areas sometimes allow for a
shared water or sewer service provision through extraterritorial
jurisdiction. However, since utilities normally maintain
responsibility for delivering water or sewer service only to
the property, problems that arise “after the meter” (e.g., curb
stop) are the property owner’s responsibility, which can make
it difficult for renters to address problems. Since much of the
housing stock in underbounded communities is aging and
inadequate, many residents with homes connected to
centralized systems perceive or experience water quality
problems, as well as plumbing problems.55 The Flint, Michigan
crisis revealed the inadequacy in municipal water quality across
the U.S. with regard to lead and how this problem can be
amplified by poor housing infrastructure.56−59 High levels of
lead in drinking water, for instance, occur through corrosion
within aging on-site plumbing, including service connections,
lead service lines, galvanized steel, lead solder joints, and
aerators.60 Current municipal water quality standards may also
be inadequate as aging pipes within households are
contributors to lead in water.61 For example, following the
lead crisis in Washington, DC, researchers identified lead
service lines as a unique risk factor for elevated blood lead
levels regardless of whether municipalities meet U.S. EPA
water standards or use treatment, such as chloramine with
orthophosphate or chlorine.62−65 Additionally, the corrosion of
household plumbing was listed as one of the reasons for
elevated exposure to lead in children from North Carolina.26 In
short, simply connecting homes in underbounded commun-
ities to new or existing centralized systems is not necessarily a
viable solution in all cases and thus other approaches need to
be developed that take into account the unique social, political,
economic, environmental, and technological settings.

■ APPROACHES
We propose three key approaches to address water and
sanitation challenges in underbounded communities: partic-
ipatory process, sociotechnical design, and sustainable
solutions. Figure 1 highlights the positive benefits of each
approach.

Participatory Process. While recognizing and accounting
for the unique social and cultural characteristics of under-
bounded communities can produce more meaningful and
locally relevant solutions, these interventions will not be
sustainable if they are not equitable.66−68 Solutions, therefore,
must emerge from within the populations they serve (e.g.,

stakeholders) and must make room for authentic participation
in decision-making processes to engender shared values of
representativeness, transparency, accountability, and accessi-
bility. A participatory process, for example, reframes the
relationship with stakeholder groups by shifting power and
resources in the structure of collaboration so they are more
equitably shared.69,70 Schensul71 proposes several key factors
that define participatory processes, including engagement
involving long-term commitments, addressing authentic
needs of affected communities, being rooted in local culture
and history, being attentive to power dynamics, being
multivocal and holistic in approach, involving reciprocal
learning between the organization and stakeholder groups,
balancing local and authoritative knowledge, and establishing
plans for long-term sustainability. Environmental justice
advocates for underbounded communities are increasingly
calling for more of these types of “bottom up” approaches to
action and change,72 while realizing the increased burdens on
community residents that add to the “third shift” on top of
work, household labor, and family care especially among
women.73 Some barriers for community participation can be
overcome by providing services to participants (e.g., meals,

Figure 1. Proposed interventions and their benefits for addressing
water and sanitation challenges of underbounded communities.
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transportation, childcare services), and also by scheduling
meetings at facilities with which partners are already familiar.74

While environmental engineering research on water and
sanitation challenges increasingly relies on citizen science
models of participation,75,76 public engagement within this
context is often for purposes of sample collection and typically
does not involve deeper-level participation in designing
interventions, including decision making. Community-based
participatory methods, for example, have been widely and
effectively used for research in the fields of health sciences, and
there is an opportunity to expand its use for environmental
engineering research.77

Recent outcome-driven studies employing participatory
approaches to research on water and sanitation insecurity
highlight three important benefits of increased community
involvement, especially with regard to decision making. First,
by sharing decision making with local residents, participatory
processes not only promote buy-in but also provide
opportunities for co-ownership of interventions and their
outcomes. Lehigh et al.,78 for example, report on a
participatory redevelopment project in an underbounded
community near Tampa, Florida, aimed at addressing water,
sanitation, and other challenges. They found that deep levels of
community engagement and a sense of ownership in
developing outcomes were achieved when their group equally
valued both local and authoritative (“expert”) knowledge.
Second, participatory processes can provide a better under-
standing of how perceptions of risk differ across stakeholder
groups. For example, in a recent review of household water
insecurity in the global north, Meehan et al.20 identify that
techno-scientific approaches to meeting regulatory standards
treat risk as an empirical phenomenon, which often contrasts
with residents’ perceptions of risk that are informed by cultural
values, local beliefs, and personal experiences. They argue that,
in some cases, water may be perceived as unclean but not
necessarily unsafe, while in other cases, treated water, though
safe to drink, may not be seen as drinkable water.79,80

Finally, participatory processes provide a greater awareness
of the ways in which trust is an intervening factor between
knowledge and acceptance of water and sanitation inter-
ventions as well as water quality more generally. For example,
in a recent cross-cultural study, Stotts et al.81 found that trust
in the water authority correlated positively to attitudes about
wastewater reuse. Work in water management has also shown
the importance of trust in relations between water managers
and communities,82,83 as well as the relationship between trust,
knowledge, and power.84−86

Sociotechnical Design. Water and sanitation security will
not be realized through simple technology transfer to
underbounded communities.87 Social science research has
convincingly demonstrated how economic inequalities, struc-
tural racism, political interests, health disparities, environ-
mental legacies, and other factors can intersect to influence
technology adoption, use, and sustainability.88 Moreover,
research shows that water and sanitation problems in
underbounded communities are often interdependent with
other resource challenges, such as food security,89 housing
infrastructure,20 and stormwater management and trans-
portation.90 Recognizing these complex dynamics, solutions
to the challenges articulated in the previous section need to
account for the diverse character, demographics, and histories
of underbounded communities.89 The challenge is how to
design “precision interventions” that are adaptive and sensitive

to local social, cultural, and historical difference. Following the
precision public health movement,91 these approaches seek to
provide context-sensitive solutions to specific populations by
taking into account their unique human and environmental
health contexts rather than more general one-size-fits-all
solutions. Such sociotechnical approaches are especially
important for underbounded communities because these
neighborhoods often emerge as outcomes of racial power
dynamics that shape, or in some cases determine, the nature of
residents’ lives and livelihoods.54

Novel research at the nexus of society and technology
provides yet unrealized opportunities for integrating user
experience and sociodemographic context into technology
design and use. Water quality monitoring sensors and IoT
(Internet of Things) smart sensors, for instance, may be useful
for real-time pollution detection at the household scale for
identifying contamination in private water wells or for
predicting and mitigating risks of contamination incidents.
Some research has been conducted on continuous or
intermittent monitoring of certain physical and chemical
parameters used to detect water contaminants,92 and
technologies have been developed for point-of-use sensors
that detect health-relevant contaminants such as lead,93

arsenic,94 and nitrate.95 However, more work is needed to
scale these technologies up to market, and to make them
portable, rapid, specific, sensitive, and cost-effective detection
techniques that can be used in resource-limited settings and
with limited technical capacity of the operator.96 In addition to
water quality monitoring, point-of-use (POU) and point-of-
entry (POE) filters, such as water filters in refrigerators, faucet-
mounted filters, pitcher-style filters, under-the-sink reverse
osmosis systems, and whole-house filtration systems are
relatively effective, but their efficacy is variable with regard to
different contaminants and they can differ greatly in cost and
maintenance.97,98 Research is also needed on the socio-
technical factors surrounding the installation, use, and
maintenance of these systems as well as the responsibilities
for households using these technologies compared to those on
centralized water and sewer systems. What new institutional
arrangements might be needed to foster equitability? Mulhern
et al.,99 for example, examined experiences and perceptions of
low-income, racially diverse households in North Carolina
served by private wells regarding adoption and use of under-
sink activated carbon block POU filters. They found a lack of
knowledge and skills for installing and maintaining the filters
were barriers to adoption and that outreach and support
programs were needed to provide technical assistance and
financial support. Furthermore, these systems are typically
designed to treat potable municipal water and are thus not
necessarily appropriate for the treatment of other water sources
used by some underbounded communities, such as ground-
water or nonpotable surface water. McLaughlin et al.100 found
that POU chlorination is very effective at treating water under
controlled conditions, such as in a laboratory, but when human
factors such as improper storage and chlorine dosing are
involved, the effectiveness decreased and water quality risks
remained. In these cases, sociotechnical design must take into
account local knowledge and user experience to improve the
effective use of these technologies.
Recent research on systems dynamics modeling in environ-

mental engineering represents a promising avenue for future
development of sociotechnical design to improve environ-
mental health, including water treatment.101−103 For example,
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Walters and Javernick-Will104 examined the dynamic inter-
actions of social, technical, financial, institutional, and
environmental factors of rural water infrastructure in Nicaragua
that prevent water treatment and delivery systems from
adapting to the complex interactions of these factors. Using
causal loop diagramming, the researchers were able to detect
the critical areas of factor interaction by identifying dominant
feedback mechanisms that influence water system function-
ality. Another recent study, by Cannon et al.,105 developed
quantitative system dynamics models to identify the effective
strategies to improve performance of community-managed
water systems. The effective strategies identified were not
technological solutions but instead service and maintenance
practices including “professionalization of the service provider”
and “preventative maintenance”.

Sustainable Solutions. Working with underbounded
communities to design sustainable solutions (i.e., those with
characteristics that preserve the renewability of the resource
and equitable access to it)106 to water and sanitation insecurity
offers many opportunities to transition to a green economy and
combat the effects of climate change. The reuse of water and
the recovery of resources (e.g., water, energy, and nutrients)
from wastewater are two strategies, in particular, that can help
provide water and sanitation service while also protecting
human and environmental health and addressing other linked
challenges, such as food and water insecurity and the high cost
of energy. The lack of adequate stormwater infrastructure in
underbounded communities, for example, provides the
opportunity to design and develop new technologies and
systems that can capture and treat stormwater and rainfall
runoff for reuse as irrigation for household or community
gardens or for potable use,107 thus addressing food and water
security issues.108 This will become especially important for
urban agriculture as the global shift in population becomes
further urbanized. In many countries outside the U.S.,
greywater from certain household activities, such as washing
dishes or clothes, is diverted from the sanitary sewer system
and treated for reuse onsite.109−112 However, in many states in
the U.S., this practice falls into a regulatory gray zone, and
more research is needed to improve the design and
management of point-of-use treatment technologies as well
as their health risks in underbounded communities and equity
issues surrounding these technologies. Developing new,
context-sensitive strategies for reducing inequities in water
provision for underbounded communities will result in
reduction of social costs and economic inefficiencies due to
time spent acquiring water or disposable income devoted to
purchase of water.113,114

On-site sanitation value chains provide another opportunity
for transition to a green economy since they are prevalent in
underbounded communities. These systems include contain-
ment, waste removal, transport, treatment, and disposal or
reuse, with each step providing opportunities for integrating
new technologies and strategies (e.g., behavioral change),
which can lead to the recovery of water, energy/heat, and
nutrients.115 However, we need to improve our understanding
of the design and operation of conventional versus resource
recovery-based sanitation systems in these settings, especially
at the household and community scales.116,117 For example,
anaerobic digesters at the household scale are prevalent
globally and allow for the harvesting of nutrients, and organic
materials from the digestate can be used as a fertilizer or soil
amendment for community gardens.118 However, many

digesters operate under conditions that are not destructive to
all human pathogens,119 and their high cost (especially for
biogas harvesting and use) often limits adoption. Community
participation during the design and development processes is,
therefore, essential for situating these technologies in under-
bounded environments, especially with regard to low cost, ease
of use, low maintenance, and independence from energy
sources.120,121

Finally, urban sanitation requires a high level of technical,
managerial, and financial competency because of the
interconnected nature of infrastructure covering personal
choices made at the household level with a broader connection
to the management of excreta that provides both public health
and environmental protection. Even though a community
might have adequate infrastructure, residents may not have
access to safe and affordable drinking water if their water
provider lacks the technical-managerial-financial capacity to
operate the system.122 Overall, sustainable technologies and
practices offer opportunities to broaden the scope of urban
design and retrofit redevelopment while protecting human and
environmental health and reducing financial burdens of
residents in underbounded communities.123

■ CONCLUSIONS
Residents of underbounded communities in the U.S. are often
subject to unique overlapping water and sanitation challenges
that jeopardize human and environmental health. The three
urgent priorities for approaches we propose here are aimed at
making solutions to these challenges more equitable, context-
sensitive, and sustainable. Moreover, these approaches align
with the U.S. Environmental Protection Agency’s 2022−2026
strategic plan,124 which seeks to embed environmental justice
into regulatory oversight. Some of the interventions driven by
the proposed approaches are undoubtedly relevant for
unincorporated rural areas as well, though more research is
needed in these settings to better understand needs and
constraints. With expanding resources for infrastructure
improvements for underserved populations on the horizon,
these approaches should be integrated into future redevelop-
ment priorities, plans, and projects.
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