Department of Civil Engineering

ENGG-321 ENVIRONMENTAL ENGINEERING-I (2+1)

Pre-requisites: Nil

Specific Objectives of course:

• To introduce the concept of environmental pollution, contamination and its sources particularly in context to water.

• To learn principles of environmental engineering applied to the design and implementation of water supply schemes.

Course Learning Outcomes (CLOs):

Upon successful completion of the course, the student will be able to:

Theory

1 DESCRIBE the demand and services for water supply.

2 DESIGN water distribution networks and treatment systems including DEWATS

Practical

1 PERFORM experiments related to various parameters for water quality.

2 EXPRESS the laboratory tests performed.

Course Outline:

1. Introduction

Environmental Engineering, Water Engineering, Sanitary Engineering, Air & Noise Pollution

2. Water Pollution

- Water chemistry and characteristics,
- Introduction to sources of pollution,
- Effects on water quality, Control parameters

3. Water Demand and Supply

- Population forecast,
- Water uses & consumption,

- Types and variations in demand
- Maximum demand & fire demand

4. Water Quality

- Water impurities & their health significance,
- Water quality guidelines/standards (US., WHO and NSDW Pakistan etc),
- Water quality monitoring

5. Water Sampling and Testing

- Sampling techniques and examination of water (physical, chemical and microbiological parameters),
- Water borne diseases

6. Water Treatment

- Treatment of surface & ground water, Screening, (types of settling),
- coagulation and flocculation,
- Filtration,
- Design aspects of slow sand and rapid sand filters and their operations,
- Pressure filters,
- Membrane Technology (Reverse Osmosis, Ultrafiltration)

7. Miscellaneous Water Treatment Techniques

- Fluoridation,
- Iron & Manganese removal,
- Water softening methods,
- Water disinfection and chemicals,
- Chlorination,
- Ozone, Ultraviolet
- Decentralized Wastewater System (DEWATS)
 - Introduction to Decentralized Wastewater treatment system
 - Plant layout and primary components
 - Working mechanism of DEWATS components i.e. Primary treatment, secondary treatment and advanced system
 - Design of settling system, Anaerobic Baffle Reactor (ABR), Anaerobic filter
 - Oduor removal
 - Approaches for Sludge disposal methods

8. Water Distribution

- Layout and design of water transmission works and distribution networks (Hardy Cross and Equivalent Pipe method),
- Service reservoirs,
- Fixtures and their installation,
- Tapping of water mains, Urban and Rural Water Supply

9. Use of relevant software in design

Practical Work:

Following experiments may be taken up for the course.

- 1. To determine optimum dosage for turbid water.
- 2. Determination of Coliform bacteria of a given water sample by Multiple Tube
- 3. To determine the amount of nitrogen in a given sample.
- 4. Study of single beam Spectrophotometer.
- 5. To determine the Conductivity of water sample
- 6. To determine the turbidity of water sample
- 7. To determine the total dissolved solid of water sample
- 8. To determine total suspended solids of water sample
- 9. To determine the ammonia determination
- 10. To determine the water hardness
- 11. To determine the odour and pH of raw and treated water of DEWATS

Recommended Books:

- 1. Mackenzie L. Davis, David A. Cornwell, Introduction to Environmental Engineering, 4th Edition, 2008
- 2. McGraw-Hill Science/Engineering/Math; 4th Edition (October 3, 2006)
- 3. S. Peavy, D. R. Rowe, George Technologious, Environmental Engineering8oiupulkj
- 4. Terence J. McGhee, Water Supply and Sewerage, 6th Edition, McGraw Hill
- 5. Howard McGraw-Hill Publishing Company; 7th Edition (March 1987)

Department of Chemical Engineering

Course Title	ENVIRONMENTAL ENGINEERING
Course Code	ENGG-421
Prerequisite	-
Contact Hours	48
Credit Hours	3
Semester	7 th or 8 th

Course Learning Outcomes (CLOs):

Upon successful completion of the course, individual student will be able to:

- Understanding basic air pollution control /water treatment processes
- Understand and explain environmental monitoring and its components
- APPLY air pollution prevention techniques for industrial applications
- Describe the typical composition of raw wastewater.
- Explain the effects of wastewater discharges on the receiving stream.
- Identify how treatment plant discharge impacts natural cycles.

Course Contents:

• Introduction to Environmental Engineering

Section 1- Air Pollution

- o Air Pollution Classification
- Causes of Air Pollution
- Sources of Air Pollution
- o Atmosphere of Earth
- Structure of the Atmosphere
- o Laws and EPA Regulations
- Pollution Prevention Act
- Pollution Concept
 - Types of Pollution
 - Air pollution Prevention control technologies
 - Source Reduction
 - o Equipment and Process Modifications
 - Particulate Matter
 - Control of Gaseous Pollutants
 - o Adsorption, Absorption, Oxidation, Reduction
- Pollution Control Devices and Design
 - Settling Chamber
 - o Spray chamber
 - o Cyclone
 - Bag house
 - o Venturi
 - Electrostatic Precipitator (ESP)

- Plume Dispersion
 - Policy Analysis
 - Regional Planning
 - o Supplementary Control Systems / Air Quality Prediction System
 - o Emergency Preparedness / Accidental Releases
 - Long Range Transport (Acid Rain)
 - State Implementation Plan Revisions / New Source Review
 - Prevention of Significant Deterioration (PSD)

Section 2 Water Treatment

- Water chemistry and characteristics,
- o Introduction to sources of waste water
- Effects on water quality, Control parameters

Water treatment technologies

- Conventional Surface Water Treatment
- Wastewater treatment removal parameters
- Removal of Suspended solids; Organic (biodegradable) material; Nutrients (nitrogen and phosphorous);
-]Pathogenic organisms (expressed as E. Coli)
- Medicine residues, organic chemicals (POP's)
- Heavy metals

Removal Methods

- Physical (sedimentation, flotation, screening, filtration)
- Biological (trickling filters, activated sludge)
- Chemical (chemical precipitation, ozonation, chlorination)
- Design of Activated sludge process
- Membrane Filtration
- Advanced Oxidation Processes
- Photocatalysis
- Decentralized Wastewater System (DEWATS)
 - ✤ Introduction to Decentralized Wastewater treatment system
 - Plant layout and primary components
 - Working mechanism of DEWATS components i.e. Primary treatment, secondary treatment and advanced system
 - Design of settling system , Anaerobic Baffle Reactor (ABR), Anaerobic filter
 - ✤ Oduor removal
 - ✤ Approaches for Sludge disposal methods
- Principles and purposes of IEE and EIA and its significance for the society
- Cost and benefits of EIA
- Main stages in EIA process
- Public consultation and participation in EIA process

• EIA methods and techniques for impact prediction and evaluation.

Teaching Methods:

- Lecture
- Discussion

Assessment Methods:

- Quiz
- Assignment
- Mid Exam
- Final Exam

Books Recommended:

- 1. Nemerow, N. L., & Wiley InterScience (Online service). (2009). *Environmental Engineering: Vol. 1*. Hoboken, N.J: John Wiley & Sons.
- 2. Vesilind, P. A., Peirce, J. J., & Weiner, R. F. (1994). *Environmental engineering*. Boston: Butterworth-Heinemann.
- 3. Metcoff and Eddy., Wastewater Engineering: Treatment and Reuse 5th Edition, Kindle Edition (2017)

Department of Environmental Sciences

Course Title	POLLUTION CONTROL TECHNOLOGIES
Course Code	
Prerequisite	-
Contact Hours	48
Credit Hours	3
Semester	8 th

Course Outline:

- Collection, treatment and distribution of drinking water supply;
- Collection, treatment and disposal of municipal and industrial wastewater;
- Low cost water treatment and sanitation techniques;
- Solid and hazardous waste management;
- Cleaner production techniques; Waste hierarchy (Reduce, re-use and recycling);
- Waste site investigation and remediation;
- Decentralized Wastewater System (DEWATS)
 - Introduction to Decentralized Wastewater treatment system
 - Plant layout and primary components
 - Working mechanism of DEWATS components i.e. Primary treatment, secondary treatment and advanced system
 - o Design of settling system, Anaerobic Baffle Reactor (ABR), Anaerobic filter
 - Oduor removal
 - Approaches for Sludge disposal methods