Climate Resilient Sanitation: Green Climate Fund (GCF) Annex

Global Webinar 22nd January 2025

Welcome by session moderator

- Nat Paynter, UNICEF

GCF Annex: Context and Overview

- Why discrete guidance is needed for climate-resilient sanitation: Ann Thomas, UNICEF
- GCF's approach to climate-resilient sanitation: Bapon Fakhruddin, GCF
- Overview of the new GCF Annex: Sam Drabble, WSUP
- Q&A

Panel Discussion: Climate-resilient sanitation experiences

- Jolly Ann Maulit, UNICEF
- Yeasin Arafat, WaterAid
- Martin Gambrill, World Bank
- James Wallace, University of Leeds
- Q&A

Proposal development

- Developing a sanitation proposal to GCF: Bapon Fakhruddin, GCF
- Audience Q&A

Next Steps and Closing

- Kate Medlicott, WHO

The Need for a Climate Resilient Sanitation Annex

unicef

22 January 2025

Ann Thomas, Sr. WASH Advisor, UNICEF

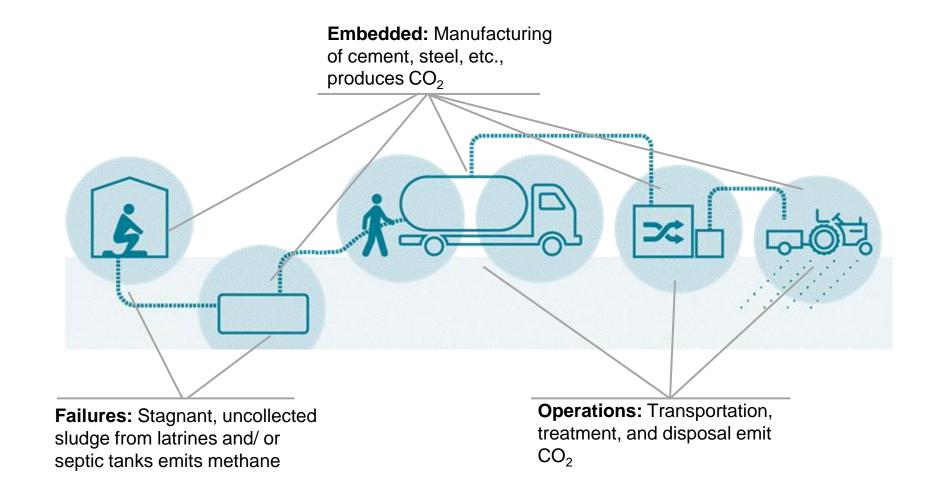
The Climate Resilient Sanitation Coalition

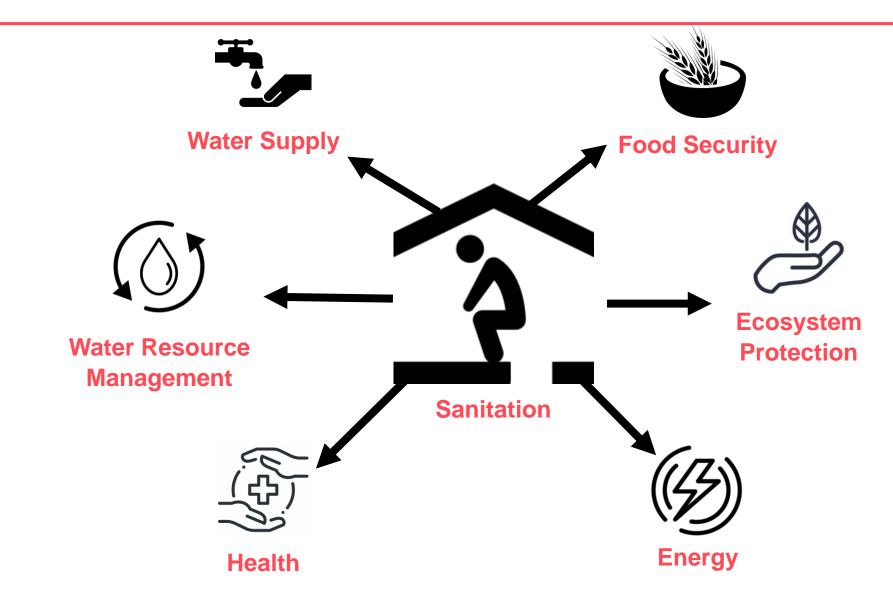
VISION:

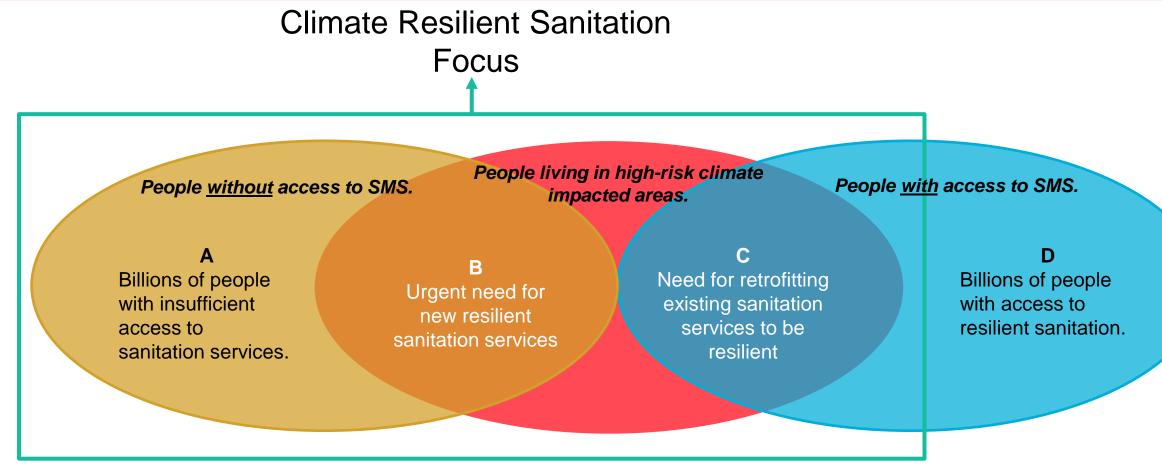
Integrating <u>sanitation</u> into global and national climate policy & practice; and integrating <u>climate</u> into global and national sanitation policy & practice.

Climate Hazards and Sanitation

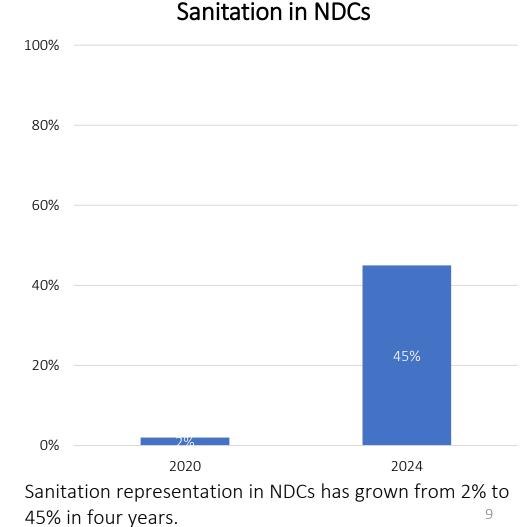
STORMS, FLOODING & SEA LEVEL RISE




Sanitation and Greenhouse Gas Emissions


Sector Impacts

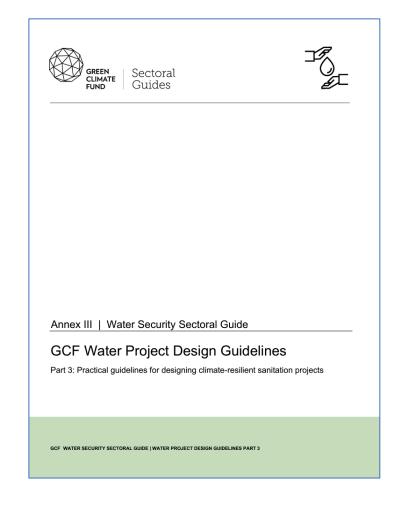
CRS Focus Populations



Sanitation in Climate Finance and Policy

Sanitation and Finance **Green Climate Fund Financing** Sanitation **Climate Finance** 0.02% Other Sectors 99.98%

As of 2020, sanitation was just 0.02% of climate financing.



- **1. Accreditation:** Increasing numbers of organizations are receiving accreditation (including UNICEF)
- **2. Increased opportunities:** Climate funds (not just GCF) are increasingly available
- 3. NDCs: NDCs are currently being updated through February
- **4.** Climate Sanitation Links: Better articulation of links among sanitation, climate, health, and environment than ever before.

How the CRS Annex to GCF Guidelines Addresses Previous Gaps

- 1. Provides **guidance** on accessing financing for climate resilient sanitation.
- 2. Addresses topics not well covered in other guidelines, such as mitigation and policy.
- **3.** Links to related sectors including environment.

Green Climate Fund And Climate Resilient Sanitation

Bapon Fakhruddin, GCF 22nd January 2025

Overview of the Green Climate Fund (GCF) Sanitation Annex

Sam Drabble, WSUP 22nd January 2025

Recap: Purpose of the GCF Annex

Annex provides **practical guidelines** for developing CRS projects and programmes

Complements the **GCF Water Security Sectoral Guide** which has 3 parts:

- Annex 1 Practical guidelines for designing water-climate-resilient projects
- Annex 2 Applications of the Practical guidelines for designing waterclimate-resilient projects in IWRM, CR-WASH, and Drought and Flood management
- <u>Annex 3</u> Practical guidelines for designing climate-resilient sanitation projects

Target audience includes Direct Access Entities at the national levels, International Access Entities and Accredited Entities

GREEN CLIMATE FUND Sectoral Guides	
Annex III Water Security Sectoral Guide	
GCF Water Project Design Guidelines Part 3: Practical guidelines for designing climate-resilient sanitation projects	

Structure of the Annex

1-Introduction

- How the Annex relates to the GCF Water Security Sectoral Guide
- Status of sanitation globally
- Sanitation, the climate crisis, and health
- GCF approach to climate-resilient sanitation (CRS)
- 2 Building the Climate Rationale for Sanitation Projects: Adaptation
- 3 Building the Climate Rationale for Sanitation Projects: Mitigation
- 4 Potential interventions to support CRS across the Sanitation Service Chain
 - Adaptation
 - Mitigation
 - Strengthening systems to enable CRS
- 5 Developing a GCF proposal

GREEN CLIMATE FUND Guides	
Annex III Water Security Sectoral Guide	
GCF Water Project Design Guidelines	
Part 3: Practical guidelines for designing climate-resilient sanitation projects	\$
GCF WATER SECURITY SECTORAL GUIDE WATER PROJECT DESIGN GUIDELINES PART 3	

Structure of the Annex

- How the Annex relates to the GCF Water Security Sectoral Guide
- Status of sanitation globally
- Sanitation, the climate crisis, and health
- GCF approach to CRS
- 2 Building the Climate Rationale for Sanitation Projects: Adaptation
- 3 Building the Climate Rationale for Sanitation Projects: Mitigation
- 4 Potential interventions to support CRS across the Sanitation Service Chain
 - Adaptation
 - Mitigation
 - Strengthening systems to enable CRS
- 5 Developing a GCF proposal

Annex III | Water Security Sectoral Guide

GCF Water Project Design Guidelines

Part 3: Practical guidelines for designing climate-resilient sanitation projects

1 - Introduction: GCF approach to CRS

Sanitation proposals to GCF must have a **clear climate rationale** and display a **level of ambition consistent with GCF's envisioned paradigm shift** for CRS. Successful proposals must achieve:

- > Effective articulation of the **climate science basis and rationale** for the project
- > Alignment with overall GCF investment criteria
- Alignment with GCF key strategies for climate-resilient sanitation

GCF investment criteria

- ✓ Impact potential
- ✓ Paradigm shift potential
- ✓ Sustainable development potential
- ✓ Needs of the recipient
- ✓ Country ownership
- ✓ Efficiency and effectiveness

GCF key strategies for CRS

- ✓ Climate-resilient infrastructure and services
- ✓ Circular economy and integrated management
- \checkmark Community engagement and capacity building
- Policy, regulatory and governance support
- ✓ Monitoring and evaluation

Structure of the Annex

- How the Annex relates to the GCF Water Security Sectoral Guide
- Status of sanitation globally
- Sanitation, the climate crisis, and health
- GCF approach to CRS
- 2 Building the Climate Rationale for Sanitation Projects: Adaptation
- 3 Building the Climate Rationale for Sanitation Projects: Mitigation
- 4 Potential interventions to support CRS across the Sanitation Service Chain
 - Adaptation
 - Mitigation
 - Strengthening systems to enable CRS
- 5 Developing a GCF proposal

GREEN CLIMATE FUND Guides	
	£
Annex III Water Security Sectoral Guide	
GCF Water Project Design Guidelines	
Part 3: Practical guidelines for designing climate-resilient sanitation project	ts

2 - Building the climate rationale: Adaptation

- Climate risk assessments are a critical step in developing the climate rationale for any GCF project

- Annex provides guidance for conducting **sanitation-focused** climate risk assessments

Assessments should follow the structure described in the GCF Water Sector Guidelines Annex 1:

Risk = Hazard X Exposure X Vulnerability

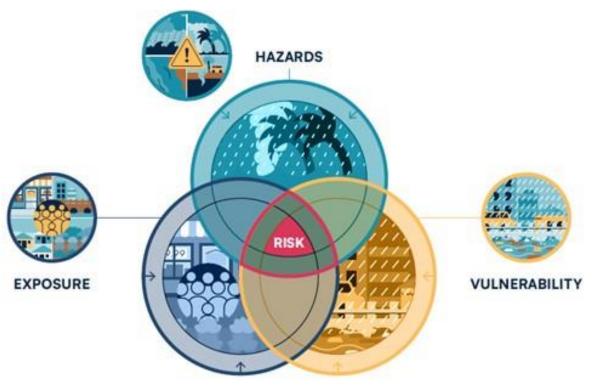


Figure 2.1, Page 26

Climate hazards and their impacts

- Climate risk assessments must outline hazards to be accounted for and their impacts on sanitation systems

Extreme storms

Sea level rise

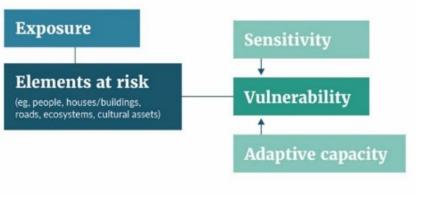
Droughts and water scarcity

Flooding

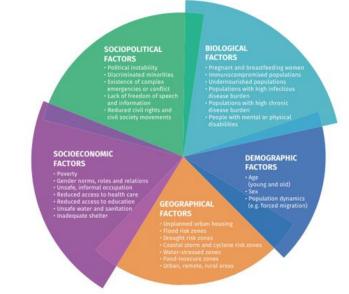
Extreme temperatures

Hazard		Impacts (using Peal et al, 2020 failure n	node classification)	
	Fecal sludge not	Fecal sludge and	Fecal sludge and	Wastewater not delivered	Wastewater not treated
	contained, not	supernatant not delivered	supernatant not treated	to treatment	
High-intensity rainfall, increased flooding, erosion and landslides	Damage to pits or superstructures making latrines unusable	People 'drain' toilets into the environment using floodwater during flood	Flooding and damage to wetland flora	Increased frequency or spill volume of combined sewer overflows	Flooding and damage to wastewater treatment plant structure and equipment
	Pits overflow/collapse leading to fecal contamination	Structural damage to pavements		Increased risk of urban flooding (overflow of inspection chambers, flooding of basements)	Flooding of wastewater treatment plant leading to temporary system failure and discharge of raw sewage
	(causing people to abandon toilets and	Road collapse or development of sinkholes due to destabilization of soil caused by damages sewers		Increase risk of pipe damage due to changed soil moisture and subsidence	Electricity failure leading to failure of pumps and aeration
	revert to open defecation)			Changes to inflow and infiltration rates into the sewer system	Road interruptions leading to disruption of site access for wastewater treatment plant staff and supplies
	Electricity failure resulting in lack of water supply and non- functioning of toilets	Damage to roads infastructure elements other than pavements (eg bridges)		Sewer blockages after an event because of sand, debris or solid waste entering sewers and pump stations	Pollutant load exceeding biological treatment capacity of wastewater treatment plants
	Inundation of drainfields	Road capacity decreases/increases in congestions/travel time increases		Electricity failure leading to failure of pumps	Discharge of untreated/partially treated effluent due to overloading or bypassing of treatment
	Backflow/overflow of sewage from septic tanks	Roads become inaccessible		Damage to sewer pumps and mains	Increased dilution of influent
	Damage to pits, septic, tanks and absorption fields	Electricity failure leading to traffic light failure		Overload of sewer system resulting in overflow to the drainage system	Reduced nutrient removal cpacity during high-intensity rainfall events (eg due to reduced retention time and high
Contamination of and damage to surface water and groundwater supplies				Higher pollutant concentration in receiving waters due to increase in combined sewer overflow spill volumes/frequency	Contamination of receiving water bodies due to wastewater treatment plant failure
Changes to groundwater recharge and groundwater levels	Floatation and damage of septic tanks due to high groundwater levels	pavement (destabilisation of			Inflow and infiltration into seprate systems causes higher inflow into wastewater treatment plants that stretch their design
	Flodding and famage of septic tanks due to high groundwater levels				capacity
	Higher groundwater pollution				
More extreme winds	2 AND -			Uprooting of trees and replacement of dmaged electricity poles leading to damage of sewer pipes	Damage to wastewater treatment plant infrastructure/buildings

Characteristics of exposure and vulnerability



Exposure = the presence of people, livelihoods, ecosystems, etc, that **could be adversely affected by climate hazards**


Exposure assessments essential to identify different elements at risk and calculate loss estimates

Vulnerability = sensitivity or susceptibility to harm and capacity to cope and adapt

Vulnerability assessments essential to understand susceptibilities of systems and populations **when exposed** to climate hazards

3 - Building the climate rationale: Mitigation

Annex sets out the evidence for the nature and scale of emissions arising from:

- **As-designed operation** of sanitation infrastructure and services
- Disposal of unstable faecal matter into the aquatic environment or on to land
- Use of products which could be substituted by well-managed use of sanitation byproducts

	Containment	Emptying and transport	Treatment	Managed or unmanaged disposal in aquatic environments or on land	Substitution of sanitation by-products for other products
Scope 1					
Direct and fugitive emissions	CO ₂ , CH ₄ and N ₂ O from <u>pits</u> , <u>tanks</u> and containers	n/a	CO ₂ , CH ₄ and N ₂ O from treatment plants	CO ₂ , CH ₄ and N ₂ O from land and water bodies	n/a
Transport	n/a	CO ₂ from truck fuel combustion	n/a	CO ₂ from truck fuel combustion removing sludge for land disposal	n/a
Scope 2					
Imported energy use	n/a	n/a	CO ₂ from imported energy used in treatment processes	n/a	n/a
Scope 3					
Embedded carbon	Materials in construction of pits, tanks and containers	n/a	Materials in construction treatment plants	n/a	n/a
Other indirect emissions	n/a	n/a	n/a	n/a	Reduction in manufacturing and transportation

Table 3.1, Page 41: Principal sources of greenhouse gas emissions from whole-chain sanitation systems which store waste onsite before using road-based transport to move to treatment.

Current evidence base on emissions from sanitation systems

- Rate and scale of emissions from any sanitation system dependent on the technology deployed, its operation and local contextual factors

- To date, only limited empirical data exist with which to estimate sanitation emissions. Emerging conclusions:

- The primary source of emissions in most sanitation systems are **direct emissions** caused by the stabilisation of faecal sludges in storage pits and tanks or at treatment plants, or by discharges of untreated faecal waste
- These emissions are significant and are likely to have been underestimated historically
- Limited evidence that either sewered or non-sewered sanitation 'better' than the other in terms of emissions
- The primary issue is that **most faecal waste never reaches** treatment

Photo: Olivia Reddy, University of Bristol

Guidance for measuring and monitoring emissions from sanitation systems

- Annex highlights Intergovernmental Panel on Climate Change (IPCC) guidelines and methodologies for estimating GHG emissions
- Estimation of Scope 1 emissions covered in Vol. 5, Chapter 6 of 2019 refinement of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories
- Measurement and estimation are both highly context-specific and specialised recommended to work with qualified scientists with a track record in measuring emissions across the entire sanitation value chain
- Significant additional data will be generated in coming years which can be used to **prepare estimates with increasing levels of confidence** as the empirical evidence base grows

Structure of the Annex

1-Introduction

- How the Annex relates to the GCF Water Security Sectoral Guide
- Status of sanitation globally
- Sanitation, the climate crisis, and health
- GCF approach to CRS
- 2 Building the Climate Rationale for Sanitation Projects: Adaptation
- 3 Building the Climate Rationale for Sanitation Projects: Mitigation
- 4 Potential interventions to support CRS across the Sanitation Service Chain
 - Adaptation
 - Mitigation
 - Strengthening systems to enable CRS
- 5 Developing a GCF proposal

FUND	Guides	Er.
Annex III Wat	er Security Sectoral Gu	ide
	Project Design G	uidelines

4 - Responses and interventions

Annex highlights the potential for sanitation to act as an **entry point for wider systems change** across sectors and to contribute to **transformative adaptation** to climate change

Guidance is provided on potential interventions to support climate change adaptation across the sanitation service chain

Type of Response	Containment	Emptying and Conveyance	Treatment, Reuse and Disposal
Technical modifications to new or existing infrastructure	Raised latrines/ containment CRIS Robust and resilient latrines/ containment CRIS Low or no water latrines CRIS Sealable and removable containment CRIS	Simplified sewers CRIS Vacuum sewer systems CRIS Treatment of sewer overflows CRIS/IM Sustainable Drainage Systems CRIS/IM	Site selection and flood prevention CRIS Corrosion resistant design CRIS Modular FSTP/WWTP design CRIS Decentralised/ distributed FSTP/WWTPs CRIS
Active management of the infrastructure or service		Scheduled or more frequent emptying for OSS CRIS Preventative O&M of sewer systems CRIS	Application of treated wastewater and faecal sludge CRIS/IM
Preparing sanitation systems for cascading impacts of failures in other systems	Alternative water sources for flush toilets CRIS/IM	Alternative emptying vehicles and equipment for OSS CRIS	Alternative power sources for FSTPs and WWTPs CRIS

Responses and interventions (2)

Potential interventions to support climate change mitigation

Intervention type	Effect category	Category		
Infrastructure modifications	Anaerobic digestion at treatment (with or without co-treatment of MSW)			
	Addition of methane/biogas capture on aerobic treatment plants			
	Enhanced composting of faecal wastes to produce agricultural products (including black soldier- fly lava)			
	Water recovery from wastewater or faecal sludge treatment for use in agriculture			
	Additional tertiary treatment and enhanced nutrient removal	CRIS/IM		
Scale and management operations	Regular emptying of household pits and tanks particularly prior to rainfall			
	Optimisation of scale and design of sewerage			
	Optimisation of scale of operations for road-based sanitation			
Governance and regulatory modifications	Improved regulation of emptying including incentives for planned emptying and disposal at treatment			
	Results-based contracts for treatment operators	CRIS		

Elements of GCF projects: CRIS - Climate Resistant Infrastructure and Services, IM - Integrated Management

Potential system strengthening interventions to enable CRS

Box 4.1: Summary of potential PIRF interventions to enable climate-resilient sanitation.

- Ensure projects align with and strengthen relevant climate policies and plans, particularly NDCs and NAPs
- Ensure policy frameworks promote circular economy approaches
- Ensure service providers are prepared for a future of multiple revenue streams and equipped with climate-specific knowledge and skills
- Mainstream climate-resilient sanitation into regulations, guidelines, standards, and codes of practice at every step of the sanitation service chain
- Leverage a menu of financing options to support the sustainability and scalability of project interventions
- Create targeted financial incentives to support private sector engagement and resource recovery
- Strengthen policy, institutional and regulatory frameworks to support the integration of sanitation with wider basic services and urban development processes
- Build flexibility into planning, financing, and regulatory frameworks to support service providers in adapting to emerging or unexpected conditions

Box 4.1, Page 75

Applying the Annex: Key messages

- Sanitation is first and foremost a **public health intervention**
- CRS proposals need to articulate the anticipated mitigation and/or adaptation impact
- While GHG reductions from CRS interventions are likely, do not promise specific reductions
- CRS projects should **promote links with other sectors** (e.g., environment, health, agriculture)
- CRS infrastructure is not effective on its own projects should include systems strengthening

Part Two

Climate-resilient Sanitation Experiences

Panel Discussion: Climate-Resilient Sanitation Experiences

- Jolly Ann Maulit: UNICEF
- Yeasin Arafat: WaterAid
- Martin Gambrill: World Bank
- James Wallace: University of Leeds

Part Three

Proposal Development

Bapon Fakhruddin, GCF 22nd January 2025

Next Steps & Close

Kate Medlicott, WHO 22nd January 2025